DOI QR코드

DOI QR Code

Effects of Low Air Temperature and Light Intensity on Yield and Quality of Tomato at the Early Growth Stage

정식 초기의 저온·저일조가 토마토 수량·품질에 미치는 영향

  • Wi, Seung Hwan (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Yeo, Kyung-Hwan (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Choi, Hak Soon (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Yu, Inho (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Jin Hyong (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural & Herbal Science)
  • 위승환 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 여경환 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 최학순 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 유인호 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이진형 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이희주 (농촌진흥청 국립원예특작과학원 채소과)
  • Received : 2021.09.14
  • Accepted : 2021.10.28
  • Published : 2021.10.31

Abstract

This study was conducted to the effect of low air temperature and light intensity conditions on yield and quality of tomato at the early stage of growth in Korea. Inplastic greenhouses, low temperature and low temperature with shade treatments were performed from 17 to 42 days after plant. Tomato growing degree days were decreased 5.5% due to cold treatment during the treatment period. Light intensity decreased 74.7% of growing degree days due to shade. After commencing treatments, the plant growth decreased by low temperature and low radiation except for height. Analysis of the yield showed that the first harvest date was the same, but the yield of the control was 3.3 times higher than low temperature with shade treatment. The cumulative yields at 87 days after transplanting were 1734, 1131, and 854 g per plant for control, low temperature, and low temperature with shade, respectively. The sugar and acidity of tomatoes did not differ between treatment and harvesting season. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of the photosynthetic rate. The results showed that the maximum photosynthetic rate, J (electric transportation rate), TPU (triose phosphate utilization), and Rd (dark respiration rate) did not show any difference with temperature, but were reduced by shading. Vcmax (maximum carboxylation rate) was decreased depending on the low temperature and the shade. Results indicated that low temperature and light intensity at the early growth stage can be inhibited the growth in the early stage but this phenomenon might be recovered afterward. The yield was reduced by low temperature and low intensity and there was no difference in quality.

본 연구는 생육초기 저온 저일조 조건이 토마토의 수량 및 품질에 미치는 영향을 구명하기 위해서 수행되었다. 비가림 하우스에서 정식 후 17일에 측창 개폐와 차광막을 이용하여 26일간 저온, 저온차광 처리하였다. 처리기간 동안의 토마토 GDD를 산출한 결과 저온 처리로 인해 GDD가 5.5% 감소하였다. 차광 처리에 의한 평균 일사량을 분석한 결과 대조구 대비 차광처리가 25.3% 수준이었으며, 일 최고광량의 평균을 분석한 결과 대조구, 차광처리가 각각 634, 156W·m-2였다. 처리 결과 저온차광에 의하여 엽수, 엽면적, 생체중, 건물중, SPAD를 분석한 결과 차광에 처리에 의하여 생육이 저하된 것을 볼 수 있었으며 초장은 웃자란 것을 확인할 수 있었다. 수량을 분석한 결과 첫 수확일은 정식 후 63일로 동일 하였으나 무처리구, 저온처리, 저온 강차광 순으로 각각 177, 99, 53g/plant로 최대 3.3배까지 차이를 보였으며, 최종 수확일인 정식 후 87일의 누적수량은 각각 1734, 1131, 854g/plant로 생육 초기 저온, 저온차광 처리에 의하여 수량이 각각 34.8, 50.7% 감소한 것을 확인할 수 있었다. 처리와 수확기에 따른 토마토의 품질을 조사한 결과 당도와 산도는 처리 및 수확기에 따른 차이가 없었다. 처리에 따른 광합성 특성을 조사하기 위하여 이산화탄소반응 곡선을 작성하고 광합성 기구의 생화학적 모델을 활용하여 분석한 결과 최대 광합성 속도와 J, TPU, Rd는 온도에 따른 차이를 보이지 않았으나 차광에 의하여 감소된 것을 확인할 수 있으며, Vcmax의 경우 저온 과 차광에 따라서 값이 감소되는 것을 확인할 수 있었다. 이로 보아 정식 후 생육초기 저온 저일조는 토마토의 초기생육과 광합성능력을 감소시키며, 생육이 진행되면서 생육에 대한 차이가 없어지거나 줄어들고 품질 변화도 나타나지 않았지만 누적 수량이 감소하기에 이를 방지하기 위해서는 생육초기 저온 및 저온저일조 등 이상기상 발생시 보온 및 보광이 필요하다.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 연구사업(세부과제번호: PJ01266601)의 지원에 의해 이루어진 것임.

References

  1. Abdel-Mawgoud A.M.R., S.O. El-Abd, S.M. Singer, A.F. Abou-Hadid, and T.C. Hsiao 1996, Effect of shade on the growth and yield of tomato plants. Acta Hortic 434:313-320. doi:10.17660/ActaHortic.1996.434.38
  2. Adams S.R., K.E. Cockshull, and C.R.J. Cave 2001a, Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869-877. doi:10.1006/anbo.2001.1524
  3. Adams S.R., V.M. Valdees, C.R.J. Cave, and J.S. Fenlon 2001b, The impact of changing light levels and fruit load on the pattern of tomato yields. J Hortic Sci Biotechnol 76:368-373. doi:10.1080/14620316.2001.11511379
  4. Choi Y.H., J.H. Lee, D.K. Park, J.K. Kwon, and Y.C. Um 2000, Effect of greenhouse cooling method on the growth and yield of the tomato cv. Momotaro in warm season. J Bio-Env Con 9:60-65. (in Korean)
  5. Cockshull K.E., C.J. Graves, and C.R. Cave 1992, The influence of shading on yield of glasshouse tomatoes. J Hortic Sci 67:11-24. doi:10.1080/00221589.1992.11516215
  6. Farquhar G.D., S.V. von Caemmerer, and J.A. Berry 1980, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90. doi:10.1007/BF00386231
  7. Gent M.P. 2007, Effect of degree and duration of shade on quality of greenhouse tomato. HortScience 42:514-520. doi:10.21273/HORTSCI.42.3.514
  8. Heuvelink E. (Ed.) 2018, Tomatoes. CABI, Boston, USA.
  9. Idris A, A.C. Linatoc, M.F. Bin Abu Bakar 2018, Effect of light intensity on the gas exchange characteristics of Melothria pendula. In IOP Conference Series: Earth and Environment Science, 269:012021. doi:10.1088/1755-1315/269/1/012021
  10. Ilic Z.S., L. Milenkovic, L. Stanojevic, D. Cvetkovic, and E. Fallik 2012, Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Sci Hortic 139:90-95. doi:10.1016/j.scienta.2012.03.009
  11. Intergovernmental Panel on Climate Change (IPCC) 2014, AR5 synthesis report: Climate change 2014, https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf, pp 35-38.
  12. Klaring H.P., and A. Krumbein 2013, The effect of constraining the intensity of solar radiation on the photosynthesis, growth, yield and product quality of tomato. J Agron Crop Sci 199:351-359. doi:10.1111/jac.12018
  13. KMA 2019, 2018 abnormal climate report, Korea Meteorological Administration, Seoul, Korea, pp 78-79.(in Korean)
  14. Lim C.H., D. Kim, Y.S. Shin, and W.K. Lee 2015, Assessment of drought severity on cropland in Korea Peninsula using normalized precipitation evapotranspiration index (NPEI). J Clim Chang 6:223-231. (in Korean) doi:10.15531/ksccr.2015.6.3.223
  15. Moon W., J.K. Kim, and J.W. Lee 2012, Horticulture 1, Knou press, Seoul, Korea, pp 209. (in Korean)
  16. Moon W., Y.B. Lee, and J.I. Son 2011, Protected Horticulture, Knou press, Seoul, Korea, pp 131-133. (in Korean)
  17. Moriondo M., C. Giannakopoulos, and M. Bindi 2011, Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic change 104:679-701. doi:10.1007/s10584-010-9871-0
  18. Nam S.W., Y.S. Kim, and D.U. Seo 2014, Change in the plant temperature of tomato by fogging and airflow in plastic greenhouse. Protected Hort Plant Fac 23:11-18. (in Korean) doi:10.12791/KSBEC.2014.23.1.011
  19. Ntatisi G., D. Savvas, H.P. Klaring, and D. Schwarz 2014, Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. J Amer Soc Hort Sci 139:230-243. doi:10.21273/JASHS.139.2.230
  20. Park K.S., S.K. Kim, S.G. Lee, H.J. Lee, and J.K. Kwon 2018, Application of plasma lighting for growth and flowering of tomato plants. HEB 59:827-833. doi:10.1007/s13580-018-0052-9
  21. Pathak T.B., and C.S. Stoddard 2018, Climate change effects on the processing tomato growing season in California using growing degree day model. Modeling Earth Systems and Environment 4:765-775. doi:10.1007/s40808-018-0460-y
  22. RDA 2020, Tomato, Rural Development Administration, Junju, Korea, pp 38-39. (in Korean)
  23. Ryu S.N., and K.S. Kim 2010, The principal of cultivation, Knou press, Seoul, Korea, pp 193. (in Korean)
  24. Sharkey T.D. 1985, Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:53-105. doi:10.1007/BF02861058
  25. Sharkey T.D. 2016, What gas exchange data can tell us about photosynthesis. Plant Cell Environ 39:1161-1163. doi:10.1111/pce.12641
  26. Sharkey T.D., C.J. Bernacchi, G.D. Farquhar, and E.L. Singsaas 2007, Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035-1040. doi:10.1111/j.1365-3040.2007.01710.x
  27. Van Ploeg D., and E. Heuvelink 2005, Influence of sub-optimal temperature on tomato growth and yield: a review. J Hortic Sci Biotechnol 80:652-659. doi:10.1080/14620316.2005.11511994
  28. Way D.A., and W. Yamori 2014, Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89-100, doi:10.1007/s11120-013-9873-7