• Title/Summary/Keyword: R&D Center

Search Result 9,963, Processing Time 0.059 seconds

High Performance 2.2 inch Full-Color AMOLED Display for Mobile Phone

  • Kim, H.K.;Suh, M.S.;Lee, K.S.;Eum, G.M.;Chung, J.T.;Oh, C.Y.;Kim, B.H.;Chung, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.325-328
    • /
    • 2002
  • We developed a high performance 2.2" active matrix OLED display for IMT-2000 mobile phone. Scan and Data driver circuits were integrated on the glass substrate, using low temperature poly-Si(LTPS) TFT CMOS technology. High efficiency EL materials were employed to the panel for low power consumption. Peak luminescence of the panel was higher than 250cd/$m^2$ with power consumption of 200mW.

  • PDF

Diaralkylthiourea Derivatives as a Novel Vanilloid Receptor Antagonist

  • Joo, Yung-Hyup;Kim, Jin-Kwan;Kim, Sun-Young;Choi, Jin-Kyu;Koh, Hyun-Ju;Jeong, Yeon-Su;Park, Young-Ho;Chung, Shin;Suh, Young-Ger;Oh, Uh-Taek;Park, Hyeung-Geun;Kim, Hee-Doo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.350.1-350.1
    • /
    • 2002
  • A series of diaralkylthiourea derivatives was prepared and tested for its antagonistic activity against vanilloid receptor. In this study we explored the possibility of selected compound type (Ⅰ) with tetrahydronaphthyl group as rigid pendant moiety. Our premise for antagonistic activity of molecules was modeled on the capsazepine. the first antagonist for vanilloid receptor. These compounds (Ⅰ) showed less potent antagonistic activity than that of capsazepine. but they were devoid of agonistic activity. (omitted)

  • PDF

Highly Manufacturable 65nm McFET (Multi-channel Field Effect Transistor) SRAM Cell with Extremely High Performance

  • Kim, Sung-Min;Yoon, Eun-Jung;Kim, Min-Sang;Li, Ming;Oh, Chang-Woo;Lee, Sung-Young;Yeo, Kyoung-Hwan;Kim, Sung-Hwan;Choe, Dong-Uk;Suk, Sung-Dae;Kim, Dong-Won;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • We demonstrate highly manufacturable Multi-channel Field Effect Transistor (McFET) on bulk Si wafer. McFET shows excellent transistor characteristics, such as $5{\sim}6 times higher drive current than planar MOSFET, ideal subthreshold swing, low drain induced barrier lowering (DIBL) without pocket implantation and negligible body bias dependency, maintaining the same source/drain resistance as that of a planar transistor due to the unique feature of McFET. And suitable threshold voltage ($V_T$) for SRAM operation and high static noise margin (SNM) are achieved by using TiN metal gate electrode.

Low Voltage Program/Erase Characteristics of Si Nanocrystal Memory with Damascene Gate FinFET on Bulk Si Wafer

  • Choe, Jeong-Dong;Yeo, Kyoung-Hwan;Ahn, Young-Joon;Lee, Jong-Jin;Lee, Se-Hoon;Choi, Byung-Yong;Sung, Suk-Kang;Cho, Eun-Suk;Lee, Choong-Ho;Kim, Dong-Won;Chung, Il-Sub;Park, Dong-Gun;Ryu, Byung-Il
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 2006
  • We propose a damascene gate FinFET with Si nanocrystals implemented on bulk silicon wafer for low voltage flash memory device. The use of optimized SRON (Silicon-Rich Oxynitride) process allows a high degree of control of the Si excess in the oxide. The FinFET with Si nanocrystals shows high program/erase (P/E) speed, large $V_{TH}$ shifts over 2.5V at 12V/$10{\mu}s$ for program and -12V/1ms for erase, good retention time, and acceptable endurance characteristics. Si nanocrystal memory with damascene gate FinFET is a solution of gate stack and voltage scaling for future generations of flash memory device. Index Terms-FinFET, Si-nanocrystal, SRON(Si-Rich Oxynitride), flash memory device.

Novel structure for a full-color AMOLED using a blue common layer (BCL)

  • Kim, Mu-Hyun;Chin, Byung-Doo;Suh, Min-Chul;Yang, Nam-Chul;Song, Myung-Won;Lee, Jae-Ho;Kang, Tae-Min;Lee, Seong-Taek;Kim, Hye-Dong;Park, Kang-Sung;Oh, Jun-Sik;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.797-798
    • /
    • 2005
  • We report a novel structure for a full-color AMOLED (Active Matrix Organic Light Emitting Diode) eliminating the patterning process of a blue emitting layer. The patterning of the three primary colors, RGB, is a key technology in the OLED fabrication process. Conventional full color AMOLED containing RGB layers includes the three opportunities of the defects to make an accurate position and fine resolution using various technologies such as fine metal mask, ink-jet printing and laser-induced transfer system. We can skip the blue patterning step by simply stacking the blue layer as a common layer to the whole active area after pixelizing two primary colors, RG, in the conventional small molecular OLED structure. The red and green pixel showed equivalent performances without any contribution of the blue emission.

  • PDF