• Title/Summary/Keyword: Quinone

Search Result 441, Processing Time 0.021 seconds

Effect of Boric Acid Treatment on the Electrochemical Properties of the Phenol-Based Activated Carbon (페놀계 활성탄소의 전기화학 특성에 미치는 붕산 처리의 영향)

  • Jung, Min-Jung;Yu, Hye-Ryeon;Lee, Dayoung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • In this study, the surface of a phenol based activated carbon (AC) used as an electrode in an electric double layer capacitor was modified via boric acid treatment for the capacitance investigation. The effect of boric acid treatment on electrochemical performance was also investigated. The AC surface functional groups ratio of quinone-like (O=C) which is electrochemical active functional groups was increased after the boric acid treatment. And, boric acid treated AC showed an increase in the specific surface area, total pore volume, and micropore volume. In case of optimum boric acid treated AC, its specific capacitance increased by 20% in comparison to that of untreated AC. These results demonstrate that a boric acid treated carbon surface-based electric double layer capacitor electrode effectively enhances specific capacitance.

Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway

  • Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.206-213
    • /
    • 2017
  • BACKGROUN/OBJECTIVES: Although studies have revealed that black garlic is a potent antioxidant, its antioxidant mechanism remains unclear. The objective of this study was to determine black garlic's antioxidant activities and possible antioxidant mechanisms related to nuclear factor erythroid 2-like factor 2 (Nrf2)-Keap1 complex. METHODS/MATERIALS: After four weeks of feeding rats with a normal fat diet (NF), a high-fat diet (HF), a high-fat diet with 0.5% black garlic extract (HF+BGE 0.5), a high-fat diet with 1.0% black garlic extract (HF+BGE 1.0), or a high-fat diet with 1.5% black garlic extract (HF+BGE 1.5), plasma concentrations of glucose, insulin,homeostatic model assessment of insulin resistance (HOMA-IR) were determined. As oxidative stress indices, plasma concentrations of thiobarbituric acid reactive substances (TBARS) and 8-isoprostaglandin $F2{\alpha}$ (8-iso-PGF) were determined. To measure antioxidant capacities, plasma total antioxidant capacity (TAC) and activities of antioxidant enzymes in plasma and liver were determined. The mRNA expression levels of antioxidant related proteins such as Nrf2, NAD(P)H: quinone-oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutathione reductase (GR), and glutathione S-transferase alpha 2 (GSTA2) were examined. RESULTS: Plasma glucose level, plasma insulin level, and HOMA-IR in black garlic supplemented groups were significantly (P < 0.05) lower than those in the HF group without dose-dependent effect. Plasma TBARS concentration and TAC in the HF+BGE 1.5 group were significantly decreased compared to those of the HF group. The activities of catalase and glutathione peroxidase were significantly (P < 0.05) increased in the HF+BGE 1.0 and HF+BGE 1.5 groups compared to those of the HF group. The mRNA expression levels of hepatic Nrf2, NQO1, HO-1, and GSTA2 were significantly (P < 0.05) increased in the HF with BGE groups compared to those in the HF group. CONCLUSIONS: The improvements of blood glucose homeostasis and antioxidant systems in rats fed with black garlic extract were related to mRNA expression levels of Nrf2 related genes.

Expression of pqq Genes from Serratia marcescens W1 in Escherichia coli Inhibits the Growth of Phytopathogenic Fungi

  • Kim, Yong-Hwan;Kim, Chul-Hong;Han, Song-Hee;Kang, Beom-Ryong;Cho, Song-Mi;Lee, Myung-Chul;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.323-328
    • /
    • 2006
  • Serratia marcescens W1, isolated from cucumber-cultivated soil in Suwon, Korea, evidenced profound antifungal activity and produced the extracellular hydrolytic enzymes, chitinase and protease. In order to isolate the antifungal genes from S. marcescens W1, a cosmid genomic library was constructed and expressed in Escherichia coli. Transformants exhibiting chitinase and protease expression were selected, as well as those transformants evidencing antifungal effects against the rice blast fungus, Magnaporthe grisea, and the cucumber leaf spot fungus, Cercospora citrullina. Cosmid clones expressing chitinase or protease exerted no inhibitory effects against the growth of fungal pathogens. However, two cosmid clones evidencing profound antifungal activities were selected for further characterization. An 8.2 kb HindIII fragment from these clones conditioned the expression of antagonistic activity, and harbored seven predicted complete open reading frames(ORFs) and two incomplete ORFs. The deduced amino acid sequences indicated that six ORFs were highly homologous with genes from S. marcescens generating pyrroloquinoline quinone(PQQ). Only subclones harboring the full set of pqq genes were shown to solubilize insoluble phosphate and inhibit fungal pathogen growth. The results of this study indicate that the functional expression of the pqq genes of S. marcescens W1 in E. coli may be involved in antifungal activity, via as-yet unknown mechanisms.

PQQ-Dependent Organic Acid Production and Effect on Common Bean Growth by Rhizobium tropici CIAT 899

  • Cho, Young-Shin;Park, Ro-Dong;Kim, Yong-Woong;Hwangbo, Hoon;Jung, Woo-Jin;Suh, Jang-Sun;Koo, Bon-Sung;Krishnan, Hari-B.;Kim, Kil-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.955-959
    • /
    • 2003
  • Rhizobium tropici CIAT 899 is capable of synthesizing inactive apo-glucose dehydrogenase (GDH). To become an active holo enzyme, the GDH requires a cofactor, PQQ. When R. tropici CIAT 899 was grown in a broth culture medium containing hydroxyapatite and pyrrolo quinoline quinone (PQQ), pH decreased while the concentration of soluble P increased. The solubilization of hydroxyapatite was associated with the production of gluconic acid and 2-ketogluconic acids. The organic acid production and P solubilization were greatly enhanced when the bacterium was grown with air supply. Effect of R. tropici CIAT 899 with (CI+PQQ) and without PQQ (CI) on the common bean growth was examined. Shoot and root weight, and N and P contents in CI+PQQ treatment, were significantly higher than those in control and CI treatment. Nodule weight and acetylene reducing activities were also significantly higher in CI+PQQ treatment than in other treatments.

Naringenin Exerts Cytoprotective Effect Against Paraquat-Induced Toxicity in Human Bronchial Epithelial BEAS-2B Cells Through NRF2 Activation

  • Podder, Biswajit;Song, Ho-Yeon;Kim, Yong-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.605-613
    • /
    • 2014
  • We have previously shown that paraquat (PQ)-induced oxidative stress causes dramatic damage in various human cell lines. Naringenin (NG) is an active flavanone, which has been reported to have beneficial bioactivities, including antioxidative, anti-inflammatory, and antitumorigenic activities, with a relatively low toxicity to normal cells. In this study, we intended to assess the cytoprotective effect of NG against PQ-induced toxicity in the human bronchial epithelial BEAS-2B cell line. Co-treatment with NG in PQ-treated BEAS-2B cells can reduce PQ-induced cellular toxicity. NG can also decrease the generation of intracellular ROS caused by PQ treatment. We also observed that treatment with NG in PQ-exposed BEAS-2B cells can significantly induce the expression of antioxidant-related genes, including GPX2, GPX3, GPX5, and GPX7. NG co-treatment can also activate the NRF2 transcription factor and promote its nuclear translocation. In addition, NG co-treatment can induce the expression of NRF2-downstream target genes such as that of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). A small interfering RNA study revealed that the knockdown of NRF2 can abrogate NG-mediated protection of the cells from PQ-induced cellular toxicity. We propose that NG effectively alleviates PQ-induced cytotoxicity in human bronchial epithelial BEAS-2B cells through the NRF2-regulated antioxidant defense pathway, and NG might be a good therapeutic candidate molecule in oxidative stress-related diseases.

Labrenzia callyspongiae sp. nov., Isolated from Marine Sponge Callyspongia elegans in Jeju Island

  • Park, So Hyun;Kim, Ji Young;Heo, Moon Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1969-1974
    • /
    • 2019
  • A Gram-staining-negative, aerobic, light brown pigment bacterium, designated strain CE80T was isolated from marine sponge Callyspongia elegans in Jeju Island, Republic of Korea. Strain CE80T grew optimally at 25℃, in the range of pH 5.0-11.0 (optimum 7.0-8.0), and with 1.0-5.0% NaCl (optimum 1-3% (w/v)). Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain CE80T belonged to the genus Labrenzia and was closely related to L. suaedae YC6927T (98.3%), L. alexandrii DFL-11T (96.6%), L. aggregata IAM 12614T (96.6%) L. marina mano18T (96.5%) and L. alba CECT 5094T (96.2%). The major fatty acids of strain CE80T were C18:1 ω7c, and summed feature. The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamin, one unidentified aminolipid, one phospholipid and four unidentified lipids. The DNA G+C content of strain CE80T was 55.9 mol%. The major respiratory quinone was Q-10. DNA-DNA relatedness between strain CE80T and L. suaedae YC6927T was 56.1±2.8%. On the basis of physiological and biochemical characterization and phylogenetic and chemotaxonomic analysis, strain CE80T represents a novel species of the Labrenzia, for which the name Labrenzia callyspongiae sp. nov., is proposed. The type strain is CE80T (=KCTC 42849T =JCM 31309T).

Sphingobacterium composti sp. nov., a Novel DNase-Producing Bacterium Isolated from Compost

  • Ten Leonid N.;Liu, Qing-Mei;Im Wan-Taek;Aslam Zubair;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1728-1733
    • /
    • 2006
  • A Gram-negative, strictly aerobic, nonmotile, and nonspore-forming bacterial strain, designated $T5-12^T$, was isolated from compost and characterized using a polyphasic taxonomical approach. The isolate was positive for catalase and oxidase tests. It could degrade DNA, but was negative for degradation of macromolecules such as casein, collagen, starch, chitin, cellulose, and xylan. The DNA G+C content was 36.0 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $iso-C_{15:0}$ (45.6%), $iso-C_{17:0}$ 3OH (17.2%), and summed feature 4 ($C_{16:0}\;{\omega}7c$ and/or $iso-C_{15:0}$ 2OH, 14.9%). Comparative 16S rRNA gene sequence analysis showed that strain $T5-12^T$ fell within the radiation of the cluster comprising members of the genus Sphingobacterium. Strain $T5-12^T$ exhibited lower than 94% of 16S rRNA gene sequence similarity with respect to the type strains of recognized Sphingobacterium species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain $T5-12^T$ ($=KCTC\;12578^T=LMG\;23401^T=CCUG\;52467^T$) should be classified in the genus Sphingobacterium as the type strain of a novel species, for which the name Sphingobacterium composti sp. novo is proposed.

Caulobacter ginsengisoli sp. nov., a Novel Stalked Bacterium Isolated from Ginseng Cultivating Soil

  • Liu, Qing-Mei;Ten, Leonid N.;Im, Wan-Taek;Lee, Sung-Taik;Yoon, Min-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • A Gram negative, aerobic, nonspore-forming, straight or curved rod-shaped bacterium, designated Gsoil $317^T$, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized using a polyphasic approach. Cells were dimorphic, with stalk (or prostheca) and nonmotile or nonstalked and motile, by means of a single polar flagellum. Comparative analysis of 16S rRNA gene sequences revealed that strain Gsoil $317^T$ was most closely related to Caulobacter mirabilis LMG $24261^T$ (97.2%), Caulobacter fusiformis ATCC $15257^T$ (97.1 %), Caulobacter segnis LMG $17158^T$ (97.0%), Caulobacter vibrioides DSM $9893^T$ (96.8%), and Caulobacter henricii ATCC $15253^T$ (96.7%). The sequence similarities to any other recognized species within Alphaproteobacteria were less than 96.0%. The detection of Q-10 as the major respiratory quinone and a fatty acid profile with summed feature 7 ($C_{18:1}\;{\omega}7c$ and/or $C_{18:1}\;{\omega}9t$ and/or $C_{18:1}\;{\omega}12t;$ 56.6%) and $C_{16:0}$ (15.9%) as the major fatty acids supported the affiliation of strain Gsoil $317^T$ to the genus Caulobacter. The G+C content of the genomic DNA was 65.5 mol%. DNA-DNA hybridization experiments showed that the DNA-DNA relatedness values between strain Gsoil $317^T$ and its closest phylogenetic neighbors were below 11%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $317^T$ should be classified as representing a novel species in the genus Caulobacter, for which the name Caulobacter ginsengisoli sp. novo is proposed. The type strain is Gsoil $317^T$ (=KCTC $12788^T=DSM\;18695^T$).

Acinetobacter antiviralis sp. nov., from Tobacco Plant Roots

  • Lee, Jung-Sook;Lee, Keun-Chul;Kim, Kwang-Kyu;Hwang, In-Cheon;Jang, Cheol;Kim, Nam-Gyu;Yeo, Woon-Hyung;Kim, Beom-Seok;Yu, Yong-Man;Ahn, Jong-Seog
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.250-256
    • /
    • 2009
  • Acinetobacter strain $KNF2022^T$ was isolated from tobacco plant roots during the screening of antiviral substances having inhibitory effects on Tobacco mosaic virus (TMV) and examined by phenotypic, chemotaxonomic, and genetic characterization. It was a nonmotile, Gram-negative bacterium. This strain contained Q-9 as the main respiratory quinone. The major cellular fatty acids of the isolate were 16:0, 18:1 w9c, and 16:1 w7c/15 iso 2OH. The DNA base composition was 44 mol%. Phylogenetic analysis based on the 16S rRNA sequence revealed that the isolate formed an evolutionary lineage distinct from other Acinetobacter species. Based on the evaluation of morphologic, physiologic, and chemotaxonomic characteristics, DNA-DNA hybridization values, and 16S rRNA sequence comparison, we propose the new species Acinetobacter antiviralis sp. nov., the type strain of which is $KNF2022^T$ (=KCTC $0699BP^T$).

Crystal Structure of Cytochrome cL from the Aquatic Methylotrophic Bacterium Methylophaga aminisulfidivorans MPT

  • Ghosh, Suparna;Dhanasingh, Immanuel;Ryu, Jaewon;Kim, Si Wouk;Lee, Sung Haeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1261-1271
    • /
    • 2020
  • Cytochrome cL (CytcL) is an essential protein in the process of methanol oxidation in methylotrophs. It receives an electron from the pyrroloquinoline quinone (PQQ) cofactor of methanol dehydrogenase (MDH) to produce formaldehyde. The direct electron transfer mechanism between CytcL and MDH remains unknown due to the lack of structural information. To help gain a better understanding of the mechanism, we determined the first crystal structure of heme c containing CytcL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT at 2.13 Å resolution. The crystal structure of Ma-CytcL revealed its unique features compared to those of the terrestrial homologues. Apart from Fe in heme, three additional metal ion binding sites for Na+, Ca+, and Fe2+ were found, wherein the ions mostly formed coordination bonds with the amino acid residues on the loop (G93-Y111) that interacts with heme. Therefore, these ions seemed to enhance the stability of heme insertion by increasing the loop's steadiness. The basic N-terminal end, together with helix α4 and loop (G126 to Y136), contributed positive charge to the region. In contrast, the acidic C-terminal end provided a negatively charged surface, yielding several electrostatic contact points with partner proteins for electron transfer. These exceptional features of Ma-CytcL, along with the structural information of MDH, led us to hypothesize the need for an adapter protein bridging MDH to CytcL within appropriate proximity for electron transfer. With this knowledge in mind, the methanol oxidation complex reconstitution in vitro could be utilized to produce metabolic intermediates at the industry level.