Browse > Article
http://dx.doi.org/10.4014/jmb.1812.12004

Labrenzia callyspongiae sp. nov., Isolated from Marine Sponge Callyspongia elegans in Jeju Island  

Park, So Hyun (Department of Aquatic Life Medicine, Jeju National University)
Kim, Ji Young (Research Institute for Basic Science, Jeju National University)
Heo, Moon Soo (Department of Aquatic Life Medicine, Jeju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.12, 2019 , pp. 1969-1974 More about this Journal
Abstract
A Gram-staining-negative, aerobic, light brown pigment bacterium, designated strain CE80T was isolated from marine sponge Callyspongia elegans in Jeju Island, Republic of Korea. Strain CE80T grew optimally at 25℃, in the range of pH 5.0-11.0 (optimum 7.0-8.0), and with 1.0-5.0% NaCl (optimum 1-3% (w/v)). Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain CE80T belonged to the genus Labrenzia and was closely related to L. suaedae YC6927T (98.3%), L. alexandrii DFL-11T (96.6%), L. aggregata IAM 12614T (96.6%) L. marina mano18T (96.5%) and L. alba CECT 5094T (96.2%). The major fatty acids of strain CE80T were C18:1 ω7c, and summed feature. The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamin, one unidentified aminolipid, one phospholipid and four unidentified lipids. The DNA G+C content of strain CE80T was 55.9 mol%. The major respiratory quinone was Q-10. DNA-DNA relatedness between strain CE80T and L. suaedae YC6927T was 56.1±2.8%. On the basis of physiological and biochemical characterization and phylogenetic and chemotaxonomic analysis, strain CE80T represents a novel species of the Labrenzia, for which the name Labrenzia callyspongiae sp. nov., is proposed. The type strain is CE80T (=KCTC 42849T =JCM 31309T).
Keywords
Labrenzia; marine sponge; novel species; 16S rRNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ruger HJ, Hofle MG. 1992. Marine star-shaped-aggregateforming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int. J. Syst. Bacteriol. 42: 133-143.   DOI
2 Ahrens R. 1968. Taxonomische Untersuchungen a sternbildenden Agrobacterium-Arten aus der westlichen Ostsee. Kiel Meeresforsch. 24: 147-173 (in German).
3 Uchino Y, Hirata A, Yokota A, Sugiyama J. 1998. Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J. Gen. Appl. Microbiol. 44: 201-210.   DOI
4 Pujalte MJ, Macian MC, Arahal DR, Garay E . 2005. Stappia alba sp. nov., isolated from Mediterranean oysters. Syst. Appl. Microbiol. 28: 672-678.   DOI
5 Kim BC, Park JR, Bae JW, Rhee SK, Kim KH, Oh JW, et al. 2006. Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int. J. Syst. Evol. Microbiol. 56: 75-79.   DOI
6 Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
7 Wilson K. 1987. Preparation of genomic DNA from bacteria. In current protocols in molecular biology.
8 Yoon SH, Ha SM, Kwon SJ, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome. Int. J. Syst. Evol. Microbiol. 67: 1613-1617.   DOI
9 Bibi F, Jeong JH, Chung EJ, Jeon CO, Chung YR. 2014. Labrenzia suaedae sp. nov., a marine bacterium isolated from a halophyte, and emended description of the genus Labrenzia. Int. J. Syst. Evol. Microbiol. 64: 1116-1122.   DOI
10 Biebl H, Pukall R, Lünsdorf H, Schulz S, Allgaier M, Tindall BJ, et al. 2007. Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov., and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int. J. Syst. Evol. Microbiol. 57: 1095-1107.   DOI
11 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI
12 Kluge AG, Farris FS. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32.   DOI
13 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser. 41: 95-98.
14 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
15 Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum-likelihood approach. J. Mol. Evol. 17: 368-376.   DOI
16 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
17 Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.   DOI
18 Schaal, KP. 1986. Genus Acinomyces Harz 1877, 133AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1383-1418. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore; Williams & Wilkins.
19 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477.   DOI
20 Yoon SH, Lim JM, Kwon SJ, Chun J . 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 110: 1281-1286.   DOI
21 Cowan ST, Steel KJ. 1965. Manual for the Identification of Medical Bacteria. Cambridge University Press: London.
22 Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101: MIDI Inc.
23 Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241.   DOI
24 Komagata K, Suzuki K. 1987. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol. 19: 161-207.   DOI
25 Tamaoka J, Komagata K. 1984. Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25: 125-128.   DOI
26 Ezaki T, Hashimoto Y, Yabuuchi E. 1989. Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229.   DOI
27 Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131.   DOI
28 Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Moore LH, et al. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464.   DOI
29 Camacho M, Redondo-Gomez S, Rodriguez-Llorente I, Rohde M, Sproer C, Schumann P, et al. 2016. Labrenzia salina sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int. J. Syst. Evol. Microbiol. 66: 5173-5180.   DOI
30 Stapp C, Knosel D. 1954. Zur Genetik sternbildender Bakterien. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2. 108: 243-259 (in German).