Browse > Article

Effect of Boric Acid Treatment on the Electrochemical Properties of the Phenol-Based Activated Carbon  

Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Yu, Hye-Ryeon (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Lee, Dayoung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.24, no.2, 2013 , pp. 201-207 More about this Journal
Abstract
In this study, the surface of a phenol based activated carbon (AC) used as an electrode in an electric double layer capacitor was modified via boric acid treatment for the capacitance investigation. The effect of boric acid treatment on electrochemical performance was also investigated. The AC surface functional groups ratio of quinone-like (O=C) which is electrochemical active functional groups was increased after the boric acid treatment. And, boric acid treated AC showed an increase in the specific surface area, total pore volume, and micropore volume. In case of optimum boric acid treated AC, its specific capacitance increased by 20% in comparison to that of untreated AC. These results demonstrate that a boric acid treated carbon surface-based electric double layer capacitor electrode effectively enhances specific capacitance.
Keywords
phenol based activated carbon; surface treatment; boric acid; electric double-layer capacitors;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, J. Colloid Interface Sci., 381, 152 (2012).   DOI   ScienceOn
2 M. J. Jung, E. Jeong, S. I. Lee, and Y. S. Lee, J. Ind. Eng. Chem., 18, 642 (2012).   DOI   ScienceOn
3 Y. S. Lee, Y. H. Kim, J. S. Hong, J. K. Suh, and G. J. Cho, Catal. Today, 120, 420 (2007).   DOI   ScienceOn
4 J. Kim, H. Hong, K. Y. Oh, and C. Lee, J. Korea Vacuum Soc., 11, 159 (2002).
5 P. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, and M. Ruhle, Chem. Phys. Lett., 260, 465 (1996).   DOI   ScienceOn
6 T. W. Little and F. S. Ohuchi, Surf. Sci., 445, 235 (2000).   DOI   ScienceOn
7 C. Zhang, Y. Duan, B. Xing, L. Zhan, W. Qiao, and L. Ling, Mining Science and Technology (China), 19, 259 (2009).
8 M. J. Jung, E. Jeong, J. W. Lim, S. I. Lee, and Y. S. Lee, Colloid Surf. A-Physicochem. Eng. Asp., 389, 274 (2011).   DOI   ScienceOn
9 V. Khomenko, E. Raymundo-Piñero, and F. Béguin, J. Power Sources, 195, 4234 (2010).   DOI   ScienceOn
10 J. Lang, X. Yan, W. Liu, R. Wang, and Q. Xue, J. Power Sources, 204, 220 (2012).   DOI   ScienceOn
11 T. E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, and G. Q. Lu, Electrochem. Commun., 10, 1594 (2008).   DOI   ScienceOn
12 C. Moreno-Castilla, M. A. Ferro-Garcia, J. P. Joly, I. Bautista-Toledo, F. Carrasco-Marin, and J. Rivera-Utrilla, Langmuir, 11, 4386 (1995).   DOI
13 S. J. Gregg and K. S. W. Sing, Adsorption Surface Area and Porosity, second ed., Academy Press, London (1982).
14 K. L. Yang, S. Yiacoumi, and C. tsouris, J. Electroanal. Chem., 540, 159 (2003).   DOI   ScienceOn
15 R. B. Mathur, V. Gupta, O. P. Bahl, A. Tressaud, and S. Flandrois, Synth. Met., 114, 197 (2000).   DOI   ScienceOn
16 M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, and M. S. Dresselhaus, J. Electrochem. Soc., 148, A910 (2001).   DOI   ScienceOn
17 M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, J. Electrochem. Soc., 148, A374 (2001).   DOI   ScienceOn
18 W. Shen, Z. Li, and Y. Liu, Recent Patents on Chemical Engineering, 1, 27 (2008).   DOI   ScienceOn
19 L. Wei and G. Yushin, Carbon, 49, 4830 (2011).   DOI   ScienceOn
20 P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008).   DOI   ScienceOn
21 S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, J. Electrochem. Soc., 147, 2507 (2000).   DOI   ScienceOn
22 Q. Li, F. Liu, L. Zhang, B. J. Nelson, S. Zhang, C. Ma, X. Tao, J. Cheng, and X. Zhang, J. Power Sources, 207, 199 (2012).   DOI   ScienceOn
23 J. K. Sun, E. H. Um, and C. T. Lee, Appl. Chem. Eng., 21, 11. (2010).
24 C. T. Lee, J. H. Kim, and B. W. Cho, Prospectives Ind. Chem., 2, 16 (1999).
25 A. S. Arico, P. Bruce, J. M. Tarascon, and W. Van-Schalkwijk, Nature Mater., 4, 366 (2005).   DOI   ScienceOn
26 J. P. Zheng, P. J. Cygan, and T. R. Jow, J. Electrochem. Soc., 142, 2699 (1995).   DOI   ScienceOn
27 A. Yamada and J. B. Goodenough, J. Electrochem. Soc., 145, 737 (1998).   DOI
28 H. P. Stadniychuk, M. A. Anderson, and T. W. Chapman, J. Electrochem. Soc., 143, 1629 (1996).   DOI   ScienceOn
29 A. Rudge, J. Davey, I. Raistrick, and S. Gottesfeld, J. Power Sources, 47, 89 (1994).   DOI   ScienceOn
30 D. Belanger, X. Ren, J. Davey, F. Uribe, and S. Gottesfeld, J. Electrochem. Soc., 147, 2923 (2000).   DOI   ScienceOn
31 C. C. Hu and C. H. Chu, Mat. Chem. Phy., 65, 329 (2000).   DOI   ScienceOn
32 J. H. Huh, M. K. Seo, H. Y. Kim, I. J. Kim, and S. J. Park, Polymer (Korea), 36, 756 (2012).   DOI
33 Y. Yamada, T. Sasaki, N. Tatsuda, D. Weingarth, K. Yan, and R. Kotz, Electrochim. Acta, 81, 138 (2012).   DOI   ScienceOn
34 J. H. Lee, G. Y. Heo, and S. J. Park, Polymer (Korea), 36, 756 (2012).   DOI
35 D. Tashima, A. Sakamoto, M. Taniguchi, T. Sakoda, and M. Otsubo, Surf. Coat. Technol., 202, 5560 (2008).   DOI   ScienceOn
36 N. A. Fathy and I. Y. El-Sherif, Carbon Lett., 12, 1 (2011).   DOI   ScienceOn
37 J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, J. Ind. Eng. Chem., 18, 116 (2012).   DOI   ScienceOn
38 D. Tashima, H. Yoshitama, T. Sakoda, A. Okazaki, and T. Kawaji, Electrochim. Acta, 77, 198 (2012).   DOI   ScienceOn