Effect of Boric Acid Treatment on the Electrochemical Properties of the Phenol-Based Activated Carbon

페놀계 활성탄소의 전기화학 특성에 미치는 붕산 처리의 영향

  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Yu, Hye-Ryeon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Dayoung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 정민정 (충남대학교 바이오응용화학과) ;
  • 유혜련 (충남대학교 바이오응용화학과) ;
  • 이다영 (충남대학교 바이오응용화학과) ;
  • 이영석 (충남대학교 바이오응용화학과)
  • Published : 2013.04.10

Abstract

In this study, the surface of a phenol based activated carbon (AC) used as an electrode in an electric double layer capacitor was modified via boric acid treatment for the capacitance investigation. The effect of boric acid treatment on electrochemical performance was also investigated. The AC surface functional groups ratio of quinone-like (O=C) which is electrochemical active functional groups was increased after the boric acid treatment. And, boric acid treated AC showed an increase in the specific surface area, total pore volume, and micropore volume. In case of optimum boric acid treated AC, its specific capacitance increased by 20% in comparison to that of untreated AC. These results demonstrate that a boric acid treated carbon surface-based electric double layer capacitor electrode effectively enhances specific capacitance.

본 연구에서는 전기이중층 커패시터의 전극 활물질로 사용되는 페놀계 활성탄소의 비 정전용량의 증가를 위하여 붕산을 이용하여 표면처리를 수행하였다. 또한, 붕산 처리가 전기화학 특성에 미치는 영향에 대하여 고찰하였다. 활성탄소의 붕산 처리는 활성탄소의 표면에 전기화학적 특성 향상에 도움이 되는 퀴논형 관능기(O=C)의 비율을 효과적으로 증가시켰으며, 비표면적과 총 기공 부피 및 미세공 부피를 증가시켰다. 최적의 조건으로 붕산 처리된 활성탄소는 미처리활성탄소에 비해 비 정전용량이 약 20% 증가하였다. 이러한 결과로부터 활성탄소의 붕산 처리는 활성탄소의 비 정전용량을 효과적으로 증가시킬 수 있다고 사료된다.

Keywords

References

  1. L. Wei and G. Yushin, Carbon, 49, 4830 (2011). https://doi.org/10.1016/j.carbon.2011.07.003
  2. P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008). https://doi.org/10.1038/nmat2297
  3. S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, J. Electrochem. Soc., 147, 2507 (2000). https://doi.org/10.1149/1.1393561
  4. Q. Li, F. Liu, L. Zhang, B. J. Nelson, S. Zhang, C. Ma, X. Tao, J. Cheng, and X. Zhang, J. Power Sources, 207, 199 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.142
  5. J. K. Sun, E. H. Um, and C. T. Lee, Appl. Chem. Eng., 21, 11. (2010).
  6. C. T. Lee, J. H. Kim, and B. W. Cho, Prospectives Ind. Chem., 2, 16 (1999).
  7. A. S. Arico, P. Bruce, J. M. Tarascon, and W. Van-Schalkwijk, Nature Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  8. J. P. Zheng, P. J. Cygan, and T. R. Jow, J. Electrochem. Soc., 142, 2699 (1995). https://doi.org/10.1149/1.2050077
  9. A. Yamada and J. B. Goodenough, J. Electrochem. Soc., 145, 737 (1998). https://doi.org/10.1149/1.1838339
  10. H. P. Stadniychuk, M. A. Anderson, and T. W. Chapman, J. Electrochem. Soc., 143, 1629 (1996). https://doi.org/10.1149/1.1836689
  11. A. Rudge, J. Davey, I. Raistrick, and S. Gottesfeld, J. Power Sources, 47, 89 (1994). https://doi.org/10.1016/0378-7753(94)80053-7
  12. D. Belanger, X. Ren, J. Davey, F. Uribe, and S. Gottesfeld, J. Electrochem. Soc., 147, 2923 (2000). https://doi.org/10.1149/1.1393626
  13. C. C. Hu and C. H. Chu, Mat. Chem. Phy., 65, 329 (2000). https://doi.org/10.1016/S0254-0584(00)00254-6
  14. J. H. Huh, M. K. Seo, H. Y. Kim, I. J. Kim, and S. J. Park, Polymer (Korea), 36, 756 (2012). https://doi.org/10.7317/pk.2012.36.6.756
  15. Y. Yamada, T. Sasaki, N. Tatsuda, D. Weingarth, K. Yan, and R. Kotz, Electrochim. Acta, 81, 138 (2012). https://doi.org/10.1016/j.electacta.2012.07.064
  16. J. H. Lee, G. Y. Heo, and S. J. Park, Polymer (Korea), 36, 756 (2012). https://doi.org/10.7317/pk.2012.36.6.756
  17. N. A. Fathy and I. Y. El-Sherif, Carbon Lett., 12, 1 (2011). https://doi.org/10.5714/CL.2011.12.1.001
  18. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, J. Ind. Eng. Chem., 18, 116 (2012). https://doi.org/10.1016/j.jiec.2011.11.074
  19. D. Tashima, H. Yoshitama, T. Sakoda, A. Okazaki, and T. Kawaji, Electrochim. Acta, 77, 198 (2012). https://doi.org/10.1016/j.electacta.2012.05.105
  20. D. Tashima, A. Sakamoto, M. Taniguchi, T. Sakoda, and M. Otsubo, Surf. Coat. Technol., 202, 5560 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.147
  21. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, and M. S. Dresselhaus, J. Electrochem. Soc., 148, A910 (2001). https://doi.org/10.1149/1.1382589
  22. M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, J. Colloid Interface Sci., 381, 152 (2012). https://doi.org/10.1016/j.jcis.2012.05.031
  23. M. J. Jung, E. Jeong, S. I. Lee, and Y. S. Lee, J. Ind. Eng. Chem., 18, 642 (2012). https://doi.org/10.1016/j.jiec.2011.11.055
  24. Y. S. Lee, Y. H. Kim, J. S. Hong, J. K. Suh, and G. J. Cho, Catal. Today, 120, 420 (2007). https://doi.org/10.1016/j.cattod.2006.09.014
  25. J. Kim, H. Hong, K. Y. Oh, and C. Lee, J. Korea Vacuum Soc., 11, 159 (2002).
  26. P. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, and M. Ruhle, Chem. Phys. Lett., 260, 465 (1996). https://doi.org/10.1016/0009-2614(96)00817-2
  27. T. W. Little and F. S. Ohuchi, Surf. Sci., 445, 235 (2000). https://doi.org/10.1016/S0039-6028(99)01061-4
  28. C. Zhang, Y. Duan, B. Xing, L. Zhan, W. Qiao, and L. Ling, Mining Science and Technology (China), 19, 259 (2009).
  29. M. J. Jung, E. Jeong, J. W. Lim, S. I. Lee, and Y. S. Lee, Colloid Surf. A-Physicochem. Eng. Asp., 389, 274 (2011). https://doi.org/10.1016/j.colsurfa.2011.08.013
  30. V. Khomenko, E. Raymundo-Piñero, and F. Béguin, J. Power Sources, 195, 4234 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.006
  31. J. Lang, X. Yan, W. Liu, R. Wang, and Q. Xue, J. Power Sources, 204, 220 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.044
  32. T. E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, and G. Q. Lu, Electrochem. Commun., 10, 1594 (2008). https://doi.org/10.1016/j.elecom.2008.08.022
  33. C. Moreno-Castilla, M. A. Ferro-Garcia, J. P. Joly, I. Bautista-Toledo, F. Carrasco-Marin, and J. Rivera-Utrilla, Langmuir, 11, 4386 (1995). https://doi.org/10.1021/la00011a035
  34. S. J. Gregg and K. S. W. Sing, Adsorption Surface Area and Porosity, second ed., Academy Press, London (1982).
  35. K. L. Yang, S. Yiacoumi, and C. tsouris, J. Electroanal. Chem., 540, 159 (2003). https://doi.org/10.1016/S0022-0728(02)01308-6
  36. R. B. Mathur, V. Gupta, O. P. Bahl, A. Tressaud, and S. Flandrois, Synth. Met., 114, 197 (2000). https://doi.org/10.1016/S0379-6779(00)00251-4
  37. M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, J. Electrochem. Soc., 148, A374 (2001). https://doi.org/10.1149/1.1357172
  38. W. Shen, Z. Li, and Y. Liu, Recent Patents on Chemical Engineering, 1, 27 (2008). https://doi.org/10.2174/2211334710801010027