• Title/Summary/Keyword: Quercetin, Quercetin glycosides

Search Result 93, Processing Time 0.037 seconds

Extractives from the Bark of Platycarya strobilacea (굴피나무(Platycarya strobilancea) 수피의 Flavonol glycosides)

  • Lee, Hak-Ju;Lee, Sang-Keug;Choi, Yun-Jeong;Jo, Hyun-Jin;Kang, Ha-Young;Choi, Don-Ha
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.408-413
    • /
    • 2007
  • The dried bark of Platycarya strobilacea were ground, extracted with 95% EtOH, concentrated, and one of EtOH extracts was fractionated with a series of n-hexane, dichloromethane and another was fractionated with a series of petroleumether, $Et_2O$, ethyl acetate on a separatory funnel. A portion of dichloromethane soluble was chromatographed on a Sephadex LH-20 column ($72.0{\times}5.0cm$) using EtOH-$CHCl_3$ (7:3, v/v) as eluent and A portion of $Et_2O$ soluble was chromatographed on a silica gel column ($42.0{\times}3.5cm$) using $CHCl_3$-MeOH (9:3, v/v) as eluent. The isolated compounds were identified by TLC, $^1H$-, $^{13}C$-NMR, HMBC and EI-MS. Two flavonoids and three flavonoid glycosides were isolated from the bark of P strobilacea. The structures were determined to quercetin (compound 1), myricetin (compound 2) as flavonol compounds and afzelin (compound 3), quercitrin (compound 4), myricitrin (compound 5) as flavonol glycosides, respectively, on the basis of spectrosopic data.

Hepatoprotective Effect of Flavonol Glycosides Rich Fraction from Egyptian Vicia calcarata Desf. Against $CCl_4$-Induced Liver Damage in Rats

  • Singab, Abdel Nasser B.;Youssef, Diaa T.A.;Noaman, Eman;Kotb, Saeed
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.791-798
    • /
    • 2005
  • The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of $CCl_4$ (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by $CCl_4$ significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3,5-di-O-$\beta$-D-diglucoside (5) and kaempferol-3,5-di-O-$\beta$-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-$\alpha$-L-rhamnosyl- (${\rightarrow}6$)-$\beta$-D-glucoside [rutin, 3], quercetin-3-O-$\beta$-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-$\beta$-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by $CCl_4$ through inhibition of lipid peroxidation caused by $CCl_4$ reactive free radicals.

Biological Activity of Phenolic Compounds in Seeds and Leaves of Safflower (Carthamus tinctorius L.)

  • Lee, Won-Jung;Cho, Sung-Hee;Lee, Jun-Young;Park, Sang-Won
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.22-39
    • /
    • 2003
  • Biological activity of phenolic compounds in seeds and leaves of safflower (Carthamu tinctorius L.) were evaluated using several in vitro and in vivo assays. Six phenolic constituents were isolated from the seeds and identified as N-feruloylserotonia, N- (p-coumaroyl)serotonin, matairesinol, 8′-hydroxyarctigenin, acacetin 7-O-$\beta$-D-glucoside (tilianine) and acacetin. Six phenolic compounds exhibited considerable antioxidative activity, and especially two serotonins showed potent DPPH radical scavenging activity and antiperoxidative activity against rat liver microsomal lipid peroxidation induced by the hydroxyl radical generated via a Fenton-type reaction. Additionally, six phenolic compounds possessed comparable cytotoxicity against three cancer cells, Hela cell, MCF-7 and HepG2 cell, and particularly acacetin and its glycosides had the most potent cytotoxicity. Moreover, we found that feeding safflower seeds attenuated bone loss, and lowered levels of plasma and liver lipids in ovariectomized rats. Serotonins, lignans and flavones stimulated proliferation of the osteoblast-like cells in a dose-dependent manner (10$^{-15}$ ~10$^{-6}$ M), as potently as E$_2$ (17$\beta$-estradiol). Particularly, serotonins were mainly responsible for bone-protecting and lipid lowering effects in ovariectomized rats. Meanwhile, eight flavonoids, including a novel quercetin-7-O-(6"-O-acetyl)-$\beta$-D-glucopyranoside and seven kown flavonoids, luteolin quercetin, luteolin 7-O-$\beta$-D-glucopyranoside, luteolin-7-O-(6"-O-acetyl)-$\beta$-D-gluco-pyranoside, quercetin 7-O- -glucopyranoside, acacetin 7-O-$\beta$-D-glucuronide and apigenin-6-C-$\beta$-D-glucopyranosyl-8-C-$\beta$-D-glucopyranoside were first isolated and identified from safflower leaf. Among these flavonoids, luteolin-acetyl-glucoside and $\beta$quercetin- acetyl-glucoside showed potent antioxidative activities against 2-deoxyribose degradation and lipid peroxidation in rat liver microsomes. Luteolin, quercetin and their corresponding glycosides also exhibited strong antioxidative activity, while acacetin glucuronide and apigenin-6, 8-di-C-glucoside were relatively less active. Finally, changes in phenolic compositions were also determined by HPLC in the safflower seed and leaf during growth stages and roasting process to produce standardized supplement powerds. These results suggest that phenolic compounds in the roasted safflower seed and leaf may be useful as potential sources of therapeutic agents against several pathological disorders such as carcinogenesis, atherosclerosis and osteoporosis.

  • PDF

Flavonol Glycosides from the Aerial Parts of Aceriphyllum rossii and Their Antioxidant Activities

  • Han Jae-Taek;Bang Myun-Ho;Chun Ock-Kyoung;Kim Dae-Ok;Lee Chang-Yong;Baek Nam-In
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.390-395
    • /
    • 2004
  • The methanol extract obtained from the aerial parts of Aceriphyllum rossii (Saxifragaceae) was fractionated into ethyl acetate (EtOAc), n-BuOH and $H_2O$ layers through solvent fractionation. Repeated silica gel column chromatography of EtOAc and n-BuOH layers afforded six flavonol glycosides. They were identified as kaempferol 3-O-$\beta$-D-glucopyranoside (astragalin, 1), quercetin 3-O-$\beta$-D-glucopyranoside (isoquercitrin, 2), kaempferol 3-O-$\alpha$-L-rhamnopyranosyl $(1{\to}6)-\beta$-D-glucopyranoside (3), quercetin 3-O$\alpha$-L-rharnnopyranosyl $(1{\to}6)-\beta$-D-qlucopyrano-side (rutin, 4), kaempferol 3-O-[$\alpha$-L-rharnnopyranosyl $(1{\to}4)-\alpha$-L-rhamnopyranosyl $(1{\to}6)-\beta$-D-glucopyranoside] (5) and quercetin 3-O-[$\alpha$-L-rhamnopyranosyl $(1{\to}4)\alpha$-L-rhamnopyranosyl $(1{\to}6)\beta$-D-glucopyranoside] (6) on the basis of several spectral data. The antioxidant activity of the six compounds was investigated using two free radicals such as the ABTS free radical and superoxide anion radical. Compound 1 exhibited the highest antioxidant activity in the ABTS $\{2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)\}$ radical scavenging method. 100 mg/L of compound 1 was equivalent to $72.1\pm1.4\;mg/L$ of vitamin C, and those of compounds 3 and 5 were equivalent to $62.7\pm0.5\;mg/L$ and $54.3\pm1.3\;mg/L$ of vitamin C, respectively. And in the superoxide anion radical scavenging method, compound 5 exhibited the highest activity with an $IC_{50}$ value of $17.6{\pm}0.3{\mu}M$. In addition, some physical and spectral data of the flavonoids were confirmed.

Isolation and Antioxidative Activities of Caffeoylquinic Acid Derivatives and Flavonoid Glycosides from Leaves of Sweet Potato (Ipomoea batatas L.)

  • Kim, Hyoung-Ja;Jin, Chang-Bae;Lee, Yong-Sup
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • Bioassay-directed chromatographic fractionation of an ethyl acetate extract from leaves of sweet potato (Ipomoea batatas L.) afforded six quinic acid derivatives: 3,5-epi-dicaffeoylquinic acid (1), 3,5-dicaffeoylquinic acid (2), methyl 3,5-O-dicaffeoylquinate (3), methyl 3,4-dicaffeoylquinate (4), methyl 4,5-dicaffeoylquinic acid (5),4,5-dicaffeoylquinate (6), and two phenolic compounds: caffeic acid (7) and caffeic acid methyl ester (8) together with three flavonoids: quercetin 3-O-${\beta}$-D-glucopyranoside (9), quercetin 3-O-${\beta}$-D-glucopyranoside, isoquercitrin (10) and kaempferol 3-O-${\beta}$-D-glucopyranoside (11). The structures of these compounds were elucidated by the aid of spectroscopic methods. These compounds were assessed for antioxidant activities using three different cell-free bioassay systems. All isolates except 11 showed potent DPPH and superoxide anion radicals scavenging, and lipid peroxidation inhibitory activities. 3,5-epi-DCQA (1) and methyl quinates (3-5) along with flavonoide 9 were isolated for the first time from this plant.

Flavonoid Glycosides as Acetylcholinesterase Inhibitors from the Whole Plants of Persicaria thunbergii

  • Kim, Se Young;Park, Jun Young;Park, Pil Sung;Bang, Sang Ho;Lee, Kyung Min;Lee, Yu Ra;Jang, Yong Hyun;Kim, Myong Jo;Chun, Wanjoo;Heo, Moon Young;Kwon, Yongsoo
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.191-195
    • /
    • 2014
  • The n-BuOH soluble fraction of the whole plant of Persicaria thungergii showed acetylcholinesterase inhibitory activity. Four flavonoid glycosides and a flavonoid were isolated from this fraction, and identified as quercitrin (1), luteolin-4'-O-${\beta}$-D-glucopyranoside (2), quercetin (3), quercetin-3-O-glucuronide (4), and isorahmnetin-3-O-glucuronid (5), by chromatographed and spectral data, respectively. All isolated compounds were showed acetylcholinesterase inhibitory activity, with $IC_{50}$ values of 243.1, 10.5, 39.1, 8.2 and $23.2{\mu}M$, respectively.

Phenolic Compounds of Aerial Parts of Euphorbia pekinensis (대극 지상부의 페놀성 화합물)

  • Ahn, Byung-Tae;Zhang, Ben Kang;Lee, Sang-Cheol;Kim, Jae-Gil;Ro, Jai-Seup;Lee, Kyong-Soon
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.170-176
    • /
    • 1996
  • A chemical examination of the aerial parts of Euphorbia pekinensis $R_{UPRECHT}$. (Euphorbiaceae) has led to the isolation of seven hydrolyzable tannins and ten fl avonoid glycosides. The former ones have been identified as gallic acid, methylgallate, 3-O-galloyl shikimic acid, 1,3,4,6-tetra-O-galloyl-${\beta}-_D$-glucose, 1,2,3,4,6-penta-O-galloyl-${\beta}-_D$-glucose, corilagin, geraniin and the latter ones as isoquercitrin, quercitrin, astragalin, afzelin, prunin, rutin, kaempferol-3-O-rutinoside, quercetin-3-O-(2"-O-galloyl)-${\beta}-_D$-glucoside and quercetin-3-O-(2"-O-galloyl)-${\alpha}-_L$-rhamnoside on the basis of chemical and spectroscopic evidence.

  • PDF

Isolation and Characterization of Antioxidative Compounds from the Aerial Parts of Angelica keiskei

  • Kim, So-Joong;Cho, Jeong-Yong;Wee, Ji-Hyang;Jang, Mi-Young;Kim, Cheol;Rim, Yo-Sup;Shin, Soo-Cheol;Ma, Seung-Jin;Moon, Jae-Hak;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • Ethyl acetate-soluble neutral fraction of hot water extracts from the aerial parts of Angelica keiskei showed a 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Six antioxidative compounds were purified and isolated by various chromatographic procedures. Based on the analyses of FAB-MS and NMR, the isolated compounds were structurally elucidated as luteolin 7-O-${\beta}$-D-glucopyranoside (1), quercetin 3-O-${\beta}$-D-galactopyranoside (2), quercetin 3-O-${\beta}$-D-glucopyranoside (3), quercetin 3-O-${\alpha}$-D-arabinopyranoside (4), kaempferol 3-O-${\alpha}$-D-arabinopyranoside (5), and luteolin 7-O-rutinoside (6). The glycosides of flavonols and luteolin showed DPPH radical-scavenging activity. One molecule of 2, 3, 4, 6, 1, and 5 scavenged 4.2, 4.2, 4.1, 2.5, 2.2, and 1.4 molecules of DPPH radical, respectively.

Preparation and Quality Properties of Extruded Snack using Onion Pomace and Onion (양파착즙박과 양파를 이용한 압출스낵의 제조 및 품질특성)

  • Kee, Hae-Jin;Park, Yang-Kyun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.578-583
    • /
    • 2000
  • To use onion pomace produced from concentrated onion juice processing, dried onion pomace or dried onions were mixed with com grits at levels of 10, 20, and 30% and were extruded in a twin-screw extruder. Quality properties of extruded onion snack were investigated. Low-lignin dietary fiber of dried onion pomace was approximately 2 times higher than that of dried onion. Browning increased with increasing onion content. Reducing sugar and free sugar in onion snack showed high content by increasing onion concentration and the majority of free sugar consisted of glucose and fructose. Flavonoid in control snack was not detected and the flavonoid content containing quercetin and quercetin glycosides was about 50% less in onion pomace snack than in onion snack. Sensory evaluation of onion snack containing 10% concentration of dried onion pomace or dried onion indicated the products were acceptable in overall eating-quality.

  • PDF

Protective effects of kaempferol, quercetin, and its glycosides on amyloid beta-induced neurotoxicity in C6 glial cell (Kaempferol, quercetin 및 그 배당체의 amyloid beta 유도 신경독성에 대한 C6 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.327-332
    • /
    • 2019
  • Alzheimer's disease (AD) is a common neurodegenerative disease. Oxidative stress by amyloid beta peptide (Aβ) of neuronal cell is the most cause of AD. In the present study, protective effects of several flavonoids such as kaempferol (K), kaempferol-3-O-glucoside (KG), quercetin (Q) and quercetin-3-β-ᴅ-glucoside (QG) from Aβ25-35 were investigated using C6 glial cell. Treatment of Aβ25-35 to C6 glial cell showed decrease of cell viability, while treatment of flavonoids such as Q and QG increased cell viability. In addition, treatment of flavonoids declined reactive oxygen species (ROS) production compared with Aβ25-35-induced control. The ROS production was increased by treatment of Aβ25-35 to 133.39%, while KG and QG at concentration of 1 μM decreased ROS production to 107.44 and 113.10%, respectively. To study mechanisms of protective effect of these flavonoids against Aβ25-35, the protein expression related to inflammation under Aβ25-35-induced C6 glial cell was investigated. The results showed that C6 glial cell under Aβ25-35-induced oxidative stress up-regulated inflammation-related protein expressions. However, treatment of flavonoids led to reduction of protein expression such as inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-1β. Especially, treatment of KG and QG decreased more effectively inflammation-related protein expression than its aglycones, K and Q. Therefore, the present results indicated that K, Q and its glycosides attenuated Aβ25-35-induced neuronal oxidative stress and inflammation.