DOI QR코드

DOI QR Code

Isolation and Antioxidative Activities of Caffeoylquinic Acid Derivatives and Flavonoid Glycosides from Leaves of Sweet Potato (Ipomoea batatas L.)

  • Kim, Hyoung-Ja (Bioanalysis and Biotransformation Research Center, Division of Life Sciences, Korea Institute of Science & Technology, Kyung Hee East-West Pharmaceutical Research Institute and Department of Life and Nanopharmaceutical Sciences, College of Phamacy, Kyung Hee University) ;
  • Jin, Chang-Bae (Bioanalysis and Biotransformation Research Center, Division of Life Sciences, Korea Institute of Science & Technology) ;
  • Lee, Yong-Sup (Kyung Hee East-West Pharmaceutical Research Institute and Department of Life and Nanopharmaceutical Sciences, College of Phamacy, Kyung Hee University)
  • Published : 2007.03.30

Abstract

Bioassay-directed chromatographic fractionation of an ethyl acetate extract from leaves of sweet potato (Ipomoea batatas L.) afforded six quinic acid derivatives: 3,5-epi-dicaffeoylquinic acid (1), 3,5-dicaffeoylquinic acid (2), methyl 3,5-O-dicaffeoylquinate (3), methyl 3,4-dicaffeoylquinate (4), methyl 4,5-dicaffeoylquinic acid (5),4,5-dicaffeoylquinate (6), and two phenolic compounds: caffeic acid (7) and caffeic acid methyl ester (8) together with three flavonoids: quercetin 3-O-${\beta}$-D-glucopyranoside (9), quercetin 3-O-${\beta}$-D-glucopyranoside, isoquercitrin (10) and kaempferol 3-O-${\beta}$-D-glucopyranoside (11). The structures of these compounds were elucidated by the aid of spectroscopic methods. These compounds were assessed for antioxidant activities using three different cell-free bioassay systems. All isolates except 11 showed potent DPPH and superoxide anion radicals scavenging, and lipid peroxidation inhibitory activities. 3,5-epi-DCQA (1) and methyl quinates (3-5) along with flavonoide 9 were isolated for the first time from this plant.

Keywords

References

  1. Barlow, S. M. (1990). Toxicological aspects of food antioxidants used as food additives. In Food Antioxidants (Hudson, B. J. F., Ed.), pp 271-307. Elsevier: Amsterdam
  2. Basnet, P., Matsushige, K., Hase, K., Kadota, S. and Namba, T. (1996). Four Di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biol. Pharm. Bull., 19, 1479-1484 https://doi.org/10.1248/bpb.19.1479
  3. Harada, N. and Nakanishi, K. (1983). Circular Dichroic Spectroscopy-exciton coupling in organic stereochemistry. Oxford University Press, Chapters 1-3, pp.1-189
  4. Islam, S. (2006). Sweet potato (Ipomoea batatas L.) leaf: its potential effect on human health and nutrition. J. Food Sci., 71, R13-R21 https://doi.org/10.1111/j.1365-2621.2006.tb08912.x
  5. Jung, H. A., Park, J. C., Chung, H. Y., Kim, J. and Choi, J. S. (1999). Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch. Pharm. Res., 22, 213-218 https://doi.org/10.1007/BF02976549
  6. Kahkonen, M. P., Hopia, A., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S. and Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem., 47, 3954-3962 https://doi.org/10.1021/jf990146l
  7. Kim, H. J. and Lee, Y. S. (2005). Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium Ramar and their antioxidant activities. Planta Med., 71, 871-876 https://doi.org/10.1055/s-2005-873115
  8. Lee, J. S., Kim, H. J., Park, H. and Lee, Y. S. (2002). New diarylheptanoids from the stems of Carpinus cordata. J. Nat. Prod., 65, 1367–1367 https://doi.org/10.1021/np020048l
  9. Luo, J. and Kong, L. (2005). Study on flavonoids from leaf of Ipomoea batatas. China J. Chinese Materia Medica, 30, 516-518
  10. Miyake, Y., Shimoi, K., Kumazawa, S., Yamamoto, K., Kinae, N. and Osawa, T. (2000). Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. J. Agric. Food Chem., 48, 3217-3224 https://doi.org/10.1021/jf990994g
  11. Parejo, I., Viladomat, F., Bastida, J., Schmeda-Hirschmann, G., Burillo, J. and Codina, C. (2004). Bioguided isolation and identification of the nonvolatile antioxidant compounds from Fennel (Foeniculum vulgare Mill.) Waste. J. Agric. Food Chem., 52, 1890-1897 https://doi.org/10.1021/jf030717g
  12. Pauli, G. F., Poetsch, F. and Nahrstedt, A. (1998). Structure assignment of natural quinic acid derivatives using proton nuclear magnetic resonance techniques. Phytochem. Anal., 9, 177-185 https://doi.org/10.1002/(SICI)1099-1565(199807/08)9:4<177::AID-PCA404>3.0.CO;2-3
  13. Popoff, T. and Theander, O. (1977). The constituents of conifer needles. VI. Phenolic glycosides from Pinus sylvestris. Acta Chemica Scandinavica, Series B: Organic Chemistry and Biochemistry, B31, 329-337 https://doi.org/10.3891/acta.chem.scand.31b-0329
  14. Ramette, R. W. (1963). Formation of monothocyanatoiron (III): a photometric equilibrium study. J. Chem. Edu., 40, 71-72 https://doi.org/10.1021/ed040p71
  15. Robards, Kevin. (2003). Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J. Chromatogr. A, 1000, 657-691 https://doi.org/10.1016/S0021-9673(03)00058-X
  16. Son, S. and Lewis, B. A. (2002). Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J. Agric. Food Chem., 50, 468-472 https://doi.org/10.1021/jf010830b
  17. Toda, S., Kumura, M. and Ohnishi, M. (1991). Effects of phenolcarboxylic acids on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med., 57, 8-10 https://doi.org/10.1055/s-2006-960005
  18. Tseng, T. H., Kao, E. S., Chu, C. Y., Chou, F. P., Lin Wu, H. W. and Wang, C. J. (1997). Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes. Food Chem. Toxicol., 35, 1159-1164 https://doi.org/10.1016/S0278-6915(97)85468-3
  19. Yoshimoto, M., Yahara, S., Okuno, S., Islam, M. S., Ishiguro, K. and Yamakawa, O. (2002). Antimutagenicity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas L) leaf. Bioscience, Biotechnology, and Biochemistry, 66, 2336-2341 https://doi.org/10.1271/bbb.66.2336
  20. Zhong, X.-N., Otsuka, H., Ide, T., Hirata, E., Takushi, A. and Takeda, Y. (1997). Three flavonol glycosides from leaves of Myrsine seguinii. Phytochemistry, 46, 943-946 https://doi.org/10.1016/S0031-9422(97)00366-X

Cited by

  1. Quinic acid derivatives from Salicornia herbacea alleviate HMGB1-mediated endothelial dysfunction vol.15, 2015, https://doi.org/10.1016/j.jff.2015.03.044
  2. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia vol.23, pp.7, 2013, https://doi.org/10.1016/j.bmcl.2013.01.115
  3. GC–MS Combined with Chemometrics for Analysis of the Components of the Essential Oils of Sweet Potato Leaves vol.71, pp.9-10, 2010, https://doi.org/10.1365/s10337-010-1561-6
  4. Biotransformation of 4,5-O-dicaffeoylquinic acid methyl ester by human intestinal flora and evaluation on their inhibition of NO production and antioxidant activity of the products vol.55, 2013, https://doi.org/10.1016/j.fct.2012.12.039
  5. A New Sesquiterpene Lactone and Other Constituents of Moquiniastrum polymorphum subsp. floccosum (Asteraceae) vol.9, pp.11, 2007, https://doi.org/10.1177/1934578x1400901102