Browse > Article

Flavonol Glycosides from the Aerial Parts of Aceriphyllum rossii and Their Antioxidant Activities  

Han Jae-Taek (Eromlife R&D Center, Eromlife Ltd. Co.)
Bang Myun-Ho (Graduate School of Biotechnology & Plant Metabolism Research Center Kyung Hee University)
Chun Ock-Kyoung (Seoul Health & Environmental Research institute)
Kim Dae-Ok (Department of Food Science and Technologg Cornell University)
Lee Chang-Yong (Department of Food Science and Technologg Cornell University)
Baek Nam-In (Graduate School of Biotechnology & Plant Metabolism Research Center Kyung Hee University)
Publication Information
Archives of Pharmacal Research / v.27, no.4, 2004 , pp. 390-395 More about this Journal
Abstract
The methanol extract obtained from the aerial parts of Aceriphyllum rossii (Saxifragaceae) was fractionated into ethyl acetate (EtOAc), n-BuOH and $H_2O$ layers through solvent fractionation. Repeated silica gel column chromatography of EtOAc and n-BuOH layers afforded six flavonol glycosides. They were identified as kaempferol 3-O-$\beta$-D-glucopyranoside (astragalin, 1), quercetin 3-O-$\beta$-D-glucopyranoside (isoquercitrin, 2), kaempferol 3-O-$\alpha$-L-rhamnopyranosyl $(1{\to}6)-\beta$-D-glucopyranoside (3), quercetin 3-O$\alpha$-L-rharnnopyranosyl $(1{\to}6)-\beta$-D-qlucopyrano-side (rutin, 4), kaempferol 3-O-[$\alpha$-L-rharnnopyranosyl $(1{\to}4)-\alpha$-L-rhamnopyranosyl $(1{\to}6)-\beta$-D-glucopyranoside] (5) and quercetin 3-O-[$\alpha$-L-rhamnopyranosyl $(1{\to}4)\alpha$-L-rhamnopyranosyl $(1{\to}6)\beta$-D-glucopyranoside] (6) on the basis of several spectral data. The antioxidant activity of the six compounds was investigated using two free radicals such as the ABTS free radical and superoxide anion radical. Compound 1 exhibited the highest antioxidant activity in the ABTS $\{2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)\}$ radical scavenging method. 100 mg/L of compound 1 was equivalent to $72.1\pm1.4\;mg/L$ of vitamin C, and those of compounds 3 and 5 were equivalent to $62.7\pm0.5\;mg/L$ and $54.3\pm1.3\;mg/L$ of vitamin C, respectively. And in the superoxide anion radical scavenging method, compound 5 exhibited the highest activity with an $IC_{50}$ value of $17.6{\pm}0.3{\mu}M$. In addition, some physical and spectral data of the flavonoids were confirmed.
Keywords
Aceriphyllum rossii; Saxifragaceae; Antioxidant activity; ABTS free radical; Super-oxide anion radical; Flavonol glycoside;
Citations & Related Records

Times Cited By Web Of Science : 33  (Related Records In Web of Science)
Times Cited By SCOPUS : 33
연도 인용수 순위
1 Arora, A., Nair, M. G., and Strasburg, G. M., Structure-activity relationships for antioxidant activities of a series of flvonoids in a liposomal system. Free Radic. Biol. Med., 24,1355-1363 (1998)   DOI   ScienceOn
2 Beck, M. A. and Haberlein, H., Flavonol glycoside from Eschscholtzia califormica. Phytochemistry, 50, 329-332(1999)   DOI   ScienceOn
3 Liu, Y, Wu, Y., Ji, K. C., Hou, A, Yoshida, T., and Okuda, T., Astragalin 2',6'-di-O-gallate from Loropetalum chinense. Phytochemistry, 46(3),389-391 (1997)   DOI   ScienceOn
4 Cholbi, M. R., Paya, M., and Alcaraz, M. J., Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia, 47, 195-199 (1991).   DOI   ScienceOn
5 Han, J. T., Kim, H. Y, Park, Y. D., Lee, Y. H., Lee, K. R., Kwon, B. M., and Baek, N. I., Aceriphyllic acid A, a new ACAT inhibitory triterpenoid, from Aceriphyllum rossii. Planta Medica, 68, 558-561 (2002)   DOI   ScienceOn
6 Kweon, M. H., Hwang, H. J., and Sung, H. C., Identificationand antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem., 49, 4546-4655 (2001)
7 Nuutila, A. M., Puupponen-Pimia, R., Aarni, M., and Oksman Caldentey. K. M., Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 80. 1-9 (2003)   DOI   ScienceOn
8 Shin-Kim, J. S., Kim. H. J., and Park, H. K., Studies on the chemical constituents of Lysimachia clethroides. Yakhak Hoeji, 37, 325-330 (1993)
9 Choi, W. H., Park, W. Y., Hwang, B. Y., Oh, G. -J., Kang, S. J., Lee, K. S., and Ro, J. S., Phenolic compounds from the stem bark of Comus walteri Wagner. Kor. J. Pharmacog., 29(3), 217-224 (1998)
10 Ho, H. M., Chen, R. Y, Leung, L. K., Cen, F. L., Huang, Y. and Chen, Z.-Y, Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomed. Pharmacother., 56, 289-295 (2002)
11 Rice-Evans, C. A, Miller. N. J., and Paganga, G., Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933-956 (1996)   DOI   ScienceOn
12 Gey, K. F., Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease. British Med. Bull., 49, 679-699 (1993)   DOI   PUBMED
13 Rice-Evans, C. A., Miller, N. J., and Paganga, G., Antioxidant properties of phenolic compounds. Trends in Plant Science, 2,152-159 (1997)   DOI   ScienceOn
14 Webby, R. F. and Markham, K. R, Flavonol 3-O-triglycosides from Actinidia species. Phytochemistry, 29. 289-292 (1990)   DOI   ScienceOn
15 Cao, G., Sofic, E., and Prior, R. L., Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med., 22, 749-760 (1997)   DOI   ScienceOn
16 Duthie, S. J., Collins, G. G., and Dobson, V. L., Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidized pyrimidines) in human lymphocytes. Mutation Research, 393, 223-231(1997)   DOI   PUBMED   ScienceOn
17 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C., Antioxidnat activity applying an improved ABTs radical cation decolorization assay. Free Radic. Biol. Med., 26,1231-1237 (1999)   DOI   ScienceOn
18 Kim, S. Y, Gao, J. J., Lee, W. C., Ruy, K. S., Lee, K. R., and Kim, Y. C., Antioxidative f1avonoids from the leaves of Morus alba. Arch. Pharm, Res., 22, 81-85 (1999)   DOI   ScienceOn
19 Kim, D.O., Lee, K. W., Lee, H. J., and Lee, C. Y, Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem., 50, 3713-3717 (2002)   DOI   ScienceOn
20 Seto. T.. Yasuda, I., and Akiyama, K., Purgative activity and principals of the fruits of Rosa multiflora and R. wichuraiana. Chem. Pharm. Bull., 40, 2080-2082 (1992)   DOI   PUBMED   ScienceOn
21 Ohshima, H.. Yoshie, Y, Auriol, S., and Gilibert, I., Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic. Biol. Med., 25,1057-1065(1998)   DOI   ScienceOn
22 Jung, H. A., Kim, A. R., Chung, H. Y, and Choi, T. S., In vitro antioxidant activity of some selected prunus species in Korea. Arch. Pharm. Res., 25, 825-827(2002)
23 Carini, R., Poli, G., Diazini, M. U., Maddix, S. P, Slater,T. F., and Cheesman K. H., Comparative evaluation of the antioxidant activity of $\alpha$-tocopherol, $\alpha$-tocopherol polyethyleneglycol 1000 succinate and $\alpha$-tocopherol succinate in isolated hepatocytes and liver microsomal suspensions. Biochem. Pharmacol., 39, 1597-1601 (1990)   DOI   PUBMED   ScienceOn
24 Donovan, J. L., Meyer, A. S., and Waterhouse, A. L., Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica). J. Agric. Food Chem., 1247-1252 (1998)
25 Kim, K. H. and Kim, M. N., Constituents of Cathami flos. Yakhak Hoeji, 36, 556-562 (1992)