• Title/Summary/Keyword: Quench properties

Search Result 62, Processing Time 0.043 seconds

A study on characteristics for a resistive SFCL with gold layer (Gold층을 가진 저항형 초전도 한류기에 대한 특성연구)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.348-351
    • /
    • 1999
  • We investigated current limiting properties for an SFCL of YBCO thin film coated with an Au layer. The YBCO film of 1 mm wide and 400 nm thick could carry the current 9.6 A$_{peak}$ without quench. The SFCL limited the fault current below 7.6 A$_{peak}$, which otherwise increases above 65 A$_{peak}$ and melted down at the potential fault current of about 100 A$_{peak}$ which is 10 times greater than the quench current. This means that the Au layer successfully protected the superconducting film by dispersing the heat generated at hot spots and electrically shunting the YBCO film.

  • PDF

Quench/recovery test results of the YBCO coated conductors(CCs) having various stabilizer thicknesses (YBCO coated conductors(CCs)의 안정화재 두께 변화에 따른 quench/recovery 특성 분석에 관한 연구)

  • Kwon, N.Y.;Kim, H.S.;Kim, K.L.;Kim, K.J.;Yim, S.W.;Kim, H.R.;Hyun, O.B.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.10-14
    • /
    • 2009
  • Since a stabilizer of YBCO coated conductor (CC) plays a very important role of bypassing over-current and transferring heat generated in the moment of fault, it is one of big issues to determine the material of the stabilizer and its dimension for the high performance of the HTS power application system. Especially, in the case of a superconducting fault current limiter (SFCL), which requires it to react immediately to the occurrence of fault, characteristics of stabilizer are decisive in limiting fault current and recovering superconducting properties during and after quenching. In this paper, the quench / recovery characteristics of YBCO CCs with various thickness of stabilizer were analyzed. The quench/recovery test carried out at 20 $V_{rms}$, 5 cycles (60 Hz) and results showed that as the thickness of the stabilizer decreased, both the final approach temperature and the recovery time decreased.

Protection properties of HTS coil charging by rotary HTS flux pump in charging and compensation modes

  • Han, Seunghak;Kim, Ji Hyung;Chae, Yoon Seok;Quach, Huu Luong;Yoon, Yong Soo;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2021
  • The low normal zone propagation velocity (NZPV) of high-temperature superconducting (HTS) tape leads to a quench protection problem in HTS magnet applications. To overcome this limitation, various studies were conducted on HTS coils without turn-to-turn insulation (NI coils) that can achieve self-protection. On the other hand, NI coils have some disadvantages such as slow charging and discharging time. Previously, the HTS coils with turn-to-turn insulation (INS coils) were operated in power supply (PS) driven mode, which requires physical contact with the external PS at room-temperature, not in persistent current mode. When a quench occurs in INS coils, the low NZPV delays quench detection and protection, thereby damaging the coils. However, the rotary HTS flux pump supplies the DC voltage to the superconducting circuit with INS coils in a non-contact manner, which causes the INS coils to operate in a persistent current mode, while enabling quench protection. In this paper, a new protection characteristic of HTS coils is investigated with INS coils charging through the rotary HTS flux pump. To experimentally verify the quench protection characteristic of the INS coil, we investigated the current magnitude of the superconducting circuit through a quench, which was intentionally generated by thermal disturbances in the INS coil under charging or steady state. Our results confirmed the protection characteristic of INS coils using a rotary HTS flux pump.

Quench Properties of a Superconducting Fault Current Limiter Using YBCO Films by Shunt Reactors (션트리액터에 의한 박막형 초전도 한류기의 퀜치 특성)

  • Nam, Gueng-Hyun;Cho, Yong-Sun;Lee, Na-Young;Park, Hyoung-Min;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1219-1221
    • /
    • 2005
  • We improved quench properties of a superconducting fault current limiter(SFCL) components based on YBCO thin films. This consists of three components with nearly identical properties and one with slightly difference properties. The units were connected in series and first of parallel to increase the current and voltage ratings. It have caused significantly imbalanced power distribution. The imbalance remarkably improved by connecting a shunt reactor to the SFCL component in parallel.

  • PDF

The Variation of Thermal Cycle on the Transformation Temperature and Mechanical Properties of CuZnAi Shape Memory Alloy (CuZnAI형상기억합금의 변태온도에 미치는 열사이클 및 기계적성질 변화)

  • Yang, Gwon-Seung;Park, Jin-Seong;Gang, Jo-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.524-534
    • /
    • 1994
  • The effects of transformation temperature and mechanical properties by thermal cycle of CuZnAl shape memory alloy with a small of misch metal and Zr contents were investigated. The addition of misch metal and Zr was very effective for reducing the grain size. After solution treatment, the specimens were post-quench aged or step quenched at $100^{\circ}C$ to $350^{\circ}C$ for variation of Rockwell hardness value. It was found that the Rockwell hareness value was very increased at $200^{\circ}C$ and $250^{\circ}C$. The fracture strength and ductility have been significantly increased with the increase of misch metal conten when tensile tested below $M_f$ temperature. Also, the fracture strength has been more increased in the case of post quench aging treatment than that of the as-quenching treatment. Aging of the $\beta$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The change in $A_s$ temperature with post-quench aging can be attributed to recovery of order in the $\beta$phase. The hystersis of transformation temperature ($A_s-M_s$) has an increasing tendency by thermal cycles.

  • PDF

Operating Properties for a Resistive SFCL of YBCO Thin Films (YBCO 박막의 저항형 초전도 한류기에 대한 동작 특성)

  • Choe, Hyo-Sang;Hyeon, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dol;Kim, Sang-Jun;Mun, Seung-Hyeon;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.537-543
    • /
    • 1999
  • We fabricated a resistive superconducting fault current limiter (SFCL) of a meander type based on a YBCO film with the meander cross section of 5 $\times$ $10^{-6}$$cm^2$, and performed current limitation experiments. The film was coated quench current was 9.6 Apeak at 60 Hz, and the fast quench time was 0.63 msec. The resistance of the limiter continuously increased for three cycles dut to the temperature rise in the gold layer. The temperature of the current limiting element reached the room temperature in 11 msec, $150^{\circ}C$ in 54 msec after quench, and was saturated afterwards. For $45^{\circ}$and $90^{\circ}$faults the fast quench times were 0.56 msec and 0.26 msec, respectively. The quench time is believed to be reduced because the fault occurred when the current was either increasing or at the peak value. This limiter effectively limited the fault current to about 1/5 of the potential current with no SFCL right after the fault and to about 1/8.5 in three cycles. We confirmed that the gold layer effectively carried out the role of heat dissipation as the SFCL was quenched.

  • PDF

Current limiting characteristics of 1-2kV/70A superconducting fault current limiter based on YBCO thin films (1-2kV/70A급 박막형 초전도 한류기의 전류제한 특성)

  • 최효상;현옥배;김혜림;차상도;최용선;임성우;황시돌
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.368-370
    • /
    • 2002
  • We present current limiting properties of 1.2kV/70A superconducting fault current limiter based on YBCO thin films. This is consisted of 6 wafers (3 parallel $\times$ 2 serial connection) with 4 inch-diameter YBCO thin film. The quench current Iq of the switching elements vary between 33.9 and 35.6 A. Within the difference of 0.5 A in the sum of quench current Iq in two stacks, the serial connection of the stacks showed the simultaneous quench behavior in applied power of 1.2 kV/70A.

  • PDF

A method for simultaneous quench of hybrid type superconducting fault current limiter (Hybrid형 초전도 한류기의 동시퀜치 유도방안)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Park, Kwon-Bae;Hwang, Si-Dole
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.916-917
    • /
    • 2001
  • We investigated the properties of a hybrid type superconducting fault current limiter (SFCL), which consists of a transformer with multiple secondary windings and resistive $YBa_2Cu_3O_7$ (YBCO) thin film stripes. The secondary windings of the transformer were coupled with each other, and a superconducting current limiting unit of YBCO stripes was connected to each of them as a switch. Simple connection in series of SFCL units tends to produce imbalance in power among the units due to slight differences in quench current. In current design, magnetic coupling between the SFCL units provides a solution to power dissipation imbalance, inducing simultaneous quench by current redistribution in the YBCO films.

  • PDF

Operating Properties of Resistive Superconducting fault Current Limiters with Various Pattern Shapes

  • Park, Hyo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1286-1291
    • /
    • 2003
  • Quench behavior of resistive superconducting fault current limiters (SFCLS) with various pattern shapes was investigated. The pattern shapes employed were meander, bi-spiral, and spital shapes of identical line width, gap and margin. SFCLS were fabricated from YBCO thin films grown on two-inch diameter Al$_2$O$_3$ substrates under the same conditions. The total length of current limiting paths was the shortest at the spital shape due to its larger useless space. Inductance component of SFCLs with the spiral shape was around two times as high as those of other two shapes. This is not desirable since impedance characteristics of existing power systems can be changed. Resistance rise of current limiting elements was low at a spiral shape before the whole quench completion, which may act as a disadvantage for simultaneous quench in serial connection between current limiting elements, but the temperature tended to have similar values at higher voltages. On the other hand, hi-spital shape was severe at insulation level between current limiting lines. When these aspects were considered, we concluded that a meander shape was appropriate to design for a resistive SFCL based on thin films except the concentration of electric field at edge areas of strip lines.