• Title/Summary/Keyword: Quasi-dimensional

Search Result 413, Processing Time 0.026 seconds

Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests

  • Liang, Shuguo;Zou, Lianghao;Wang, Dahai;Huang, Guoqing
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.565-583
    • /
    • 2014
  • Using synchronous surface pressures from the wind tunnel test, the three dimensional wind load models of high-rise buildings are established. Furthermore, the internal force responses of symmetric high-rise buildings in along-wind, across-wind and torsional directions are evaluated based on mode acceleration method, which expresses the restoring force as the summation of quasi-static force and inertia force components. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher modes can be considered, of symmetric high-rise buildings in along-wind, across-wind and torsional directions are deduced based on internal forces equivalence. Finally the equivalent static wind loads of an actual symmetric high-rise building are obtained by this method, and compared with the along-wind equivalent static wind loads obtained by China National Standard.

Approximate Solution of Absorption Process in an Air-Cooled Vertical Plate Absorber (공냉식 수직평판형 흡수기의 흡수과정에 대한 근사해법)

  • Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.453-462
    • /
    • 1994
  • An unsteady quasi one-dimensional model of momentum, heat and mass transfer in a falling film of a vertical plate absorber which is cooled by air was developed using the integral method. Energy conservation of the absorber wall is considered in the model. The model can predict absorption rate, film thickness and mean velocity as well as concentration and temperature profiles. Predictions of steady state temperature and concentration profiles for LiBr/water system for constant wall temperature condition are in good agreement with the two-dimensional finite difference method solutions. Effects of operating conditions, such as convective heat transfer coefficient between the cooling air and the absorber wall, cooling air temperature and film thickness at inlet, on absorption rate of water vapor into LiBr/water solution were shown.

  • PDF

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

Three-dimensional stress analysis of composite laminates patches under extension load (인장하중 하에서 복합재 적층 패치의 3 차원 응력 해석)

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Heung-Soo;Grediac, Michel
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.652-657
    • /
    • 2008
  • A stress distribution of composite laminates patches is obtained by using the Kantorovich method when the substrate is under uniaxial load. The analysis is based on the stress function approach and uses the complementary virtual work principle. The three-dimensional stresses satisfy the traction free conditions at the free edges and the top surfaces of the patch. The stress of the bottom surfaces of the patch is obtained from equilibrium equation of patch and substrate. To demonstrate the efficiency and validity of the proposed analysis, numerical examples for cross-ply and quasi-isotropic laminates are included. The present method provides accurate stresses in the interior and near the free edges of composite laminate patches.

  • PDF

Time Domain Analysis of a Moored Spar Platform in Waves (파랑 중 계류된 스파 플랫폼의 시간영역 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.1-7
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time domain simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inertia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

A Formulation of the Differential Equation on the Equations of Motion and Dynamic Analysis for the Constrained Multibody Systems (구속된 다물체 시스템에 대한 운동 방정식의 미분 방정식화 및 동역학 해석)

  • 이동찬;이상호;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.154-161
    • /
    • 1997
  • This paper presents the method to eliminate the constraint reaction in the Lagrange multiplier form equation of motion by using a generalized coordinate driveder from the velocity constraint equation. This method introduces a matrix method by considering the m dimensional space spanned by the rows of the constraint jacobian matrix. The orthogonal vectors defining the constraint manifold are projected to null vectors by the tangential vectors defined on the constraint manifold. Therefore the orthogonal projection matrix is defined by the tangential vectors. For correcting the generalized position coordinate, the optimization problem is formulated. And this correction process is analyzed by the quasi Newton method. Finally this method is verified through 3 dimensional vehicle model.

  • PDF

Phonon-Assisted Electron Hopping Conduction in the Uranium Doped One-Dimensional Antiferromagnet Ca2CuO3

  • Thanh, Phung Quoc;Yu, Seong-Cho;Nhat, Hoang-Nam
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.132-135
    • /
    • 2008
  • The authors studied the conduction mechanism in an uranium doped low dimensional magnetic system $Ca_2CuO_3$. This system exhibits the S=1/2 quasi 1D antiferromagnetic chains of -Cu-O- with strong magnetic coupling, and demonstrates continuous semiconductor-like behavior with constant covalent insulator character. This paper identifies the conduction is due to thermally activated phonon-assisted electron hopping between dopant uranium sites. The parameter a, the characteristic for hopping probability, was determined to be 0.18 ${\AA}^{-1}$. This value manifests a relatively stronger hopping probability for $Ca_2CuO_3$ as compared with other uranium doped ceramics.

The Magnetic Field Dependence Properties of Quasi Two Dimensional Electron-piezoelectric Potential Interacting System in GaN and ZnO

  • Lee, S.H.;Sug, J.Y.;Lee, J.H.;Lee, J.T.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.408-412
    • /
    • 2011
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in GaN and ZnO. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). Through the analysis of this work, we found the increasing properties of the optical Quantum Transition Line Shapes(QTLSs) which show the absorption power and the Quantum Transition Line Widths(QTLWs) with the magnetic-field in GaN and ZnO. We also found that QTLW, ${\gamma}(B)_{total}$ of GaN < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B < 25 Tesla.

Numerical Design and Performance Prediction of Low Specific Speed Centrifugal Pump Impeller

  • Yongxue, Zhang;Xin, Zhou;Zhongli, Ji;Cuiwei, Jiang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.133-139
    • /
    • 2011
  • In this paper, Based on Two-dimensional Flow Theory, adopting quasi-orthogonal method and point-by-point integration method to design the impeller of the low specific speed centrifugal pump by code, and using RANS (Reynolds Averaged N-S) Equation with a standard k-${\varepsilon}$ two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the impeller of the low specific speed pump. An analysis of the influences of the blade profile on velocity distributions, pressure distributions and pump performance and the investigation of the flow regulation pattern in the impeller of the centrifugal pump are presented. And the result shows that this method can be used as a new way in low speed centrifugal pump impeller design.

Development of train/bridge interaction Analysis program Consideration braking (열차 제동하중을 고려한 차량/교량 상호 작용 해석기법 개발)

  • Yun hee sub;Kim Man-Cheol;Han sang chel
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1177-1183
    • /
    • 2005
  • This paper presents the effects of dynamic response of the railway bridge through the suspension system when the train is moving with uniform speed and non-uniform speed Railway bridges are subjected to dynamic loads generated by the interaction between moving vehicles and the bridge structures. these dynamic loads result in response fluctuation in bridge members. To investigate the real dynamic behavior of the bridge, a number of analytical and experimental investigation should be carried out. This paper, a train/bridge interaction analysis program considerate braking action. New scheme consideration of braking action on the bridge using speed-dependent braking function is presented. This program also used torsional degree of freedom and constraint equation based on geometrical relationship in order to take into consideration three-dimensional eccentricity effect due to the operation on double track through quasi three-dimensional analysis.

  • PDF