Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.4.408

The Magnetic Field Dependence Properties of Quasi Two Dimensional Electron-piezoelectric Potential Interacting System in GaN and ZnO  

Lee, S.H. (Department of Electrical Engineering, Donga University)
Sug, J.Y. (School of Phys. & Ener. Science, Kyungpook National University)
Lee, J.H. (Department of Materials Science & Engineering, Donga University)
Lee, J.T. (Department of Electrical Engineering, Donga University)
Publication Information
Abstract
We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in GaN and ZnO. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). Through the analysis of this work, we found the increasing properties of the optical Quantum Transition Line Shapes(QTLSs) which show the absorption power and the Quantum Transition Line Widths(QTLWs) with the magnetic-field in GaN and ZnO. We also found that QTLW, ${\gamma}(B)_{total}$ of GaN < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B < 25 Tesla.
Keywords
GaN and ZnO; quantum transport theory; equilibrium average projection scheme (EAPS); electron phonon coupling system; quantum transition line shapes (QTLS); quantum transition line widths (QTLW); cyclotron resonance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. Y. Sug, S. H. Lee, and J. Y. Choi, J. Korean Phys. Soc. 54, 1403 (2009).   DOI   ScienceOn
2 C. M. Wolfe and G. E. Stillman, Physical Properties of Semiconductors, Prentice-Hall, Englewood Cliffs, New Jersey (1989).
3 C. S. Ting, S. C. Ying, and J. J. Quinn, Phys. Rev. B16, 5394 (1977).
4 Wu Xiaoguang, F. M. Peeters, and J. T. Devreese, Phys. Rev. B34, 8800 (1986).
5 P. Grigoglini and G. P. Parravidini, Phys. Rev. B 125, 5180 (1982).
6 J. R. Barker, J. Phys. C 6, 2633 (1973).
7 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).   DOI
8 R. Zwanzig, J. Chem. Phys. 33, 1338 (1960)   DOI
9 H. Mori, Progr. Theor. Phys. 33, 423 (1965).   DOI
10 K. Nagano, T. Karasudani, and H. Okamoto, Progr. Theor. Phys. 63, 1904 (1980).   DOI
11 R. Zwanzig, J. Chem. Phys. 60, 2717 (1960).
12 V. M. Kenkre, Phys. Rev. A4, 2327 (1971)
13 V. M. Kenkre, Phys. Rev. A6, 769 (1972).
14 S. G. Jo, N. L. Kang, Y. J. Cho, and S. D. Choi, J. Korean Phys. Soc. 30, 105 (1997).
15 J. Y. Sug and S. D. Choi, Phys. Rev. E 55, 314 (1997).   DOI   ScienceOn
16 J. Y. Sug and S. D. Choi, Phys. Rev. B 64, 235210 (2001).   DOI   ScienceOn
17 H. Kobori, T. Ohyama, and E. Otsuka, J. Phys. Soc. Jpn. 59, 2141 (1989).
18 J. Y. Sug, S. H. Lee, and J. J. Kim, Cent. Eur. J. Phys. 6, 812 (2008).   DOI   ScienceOn
19 J. Y. Sug, S. H. Lee, J. Y. Choi, G. Sa-Gong, and J. J. Kim, Jpn. J. Appl. Phys. 47, 7757 (2008).   DOI