• Title/Summary/Keyword: Quasi Resonant Switching

Search Result 96, Processing Time 0.02 seconds

Development of Induction Heated Hot Water System using Soft Switching PWM High Frequency Inverter

  • Lee, Jong-Kurl;Mun, Sang-Pil;Park, Man-Kyu;Nakaoka, Mustsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.325-328
    • /
    • 2008
  • This paper presents a new conceptual electromagnetic induction eddy current-based stainless steel plate spiral type heater for heat exchanger or dual packs Heater in hot water system boiler steamer and super heated steamer, which is more suitable and acceptable for new generation consumer power applications. In addition, an active clamped quasi resonant PWM high frequency inverter using trench gate IGBTs power module can operate under a principle of zero voltage soft commutation with PWM is developed and demonstrated fora high efficient induction heated hot water system and boiler in the consumer power applications This consumer induction heater power appliance using active clamp soft switching PWM high-frequency inverter is evaluated and discussed on the basis of the simulation and experimental results.

  • PDF

Comparative Analysis on Quasi-Resonant Switching Cell for Soft-Switching of Bridge-Type Power Converter (브릿지형 전원장치의 소프트 스위칭을 위한 준공진 회로의 비교 및 분석)

  • Lee, Jaehyung;Noh, Tae-Won;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.14-15
    • /
    • 2017
  • 본 논문은 브릿지형 양방향 전력변환장치의 기본 제어 방식을 유지하면서 효율을 향상시키기 위하여 소프트 스위칭을 하는 준공진 회로를 비교한다. 각 회로의 이론적 분석 및 시뮬레이션 검증을 통하여 제어 방식과 효율 개선 관점에서 장단점을 분석한다. 분석결과를 기반으로 전력변환장치의 정격용량 및 스위칭 주파수에 적합한 준공진 스위칭 셀을 도출한다.

  • PDF

A Study on Output Voltage Stabilization of 20W Class Multi-output QR Flyback Converter for Auxiliary Power (20W급 보조전원용 다출력 QR 플라이백 컨버터의 출력전압 안정화에 관한 연구)

  • Yoo, Jeong Sang;Gil, Yong Man;Kim, Hyun Bae;Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.157-160
    • /
    • 2021
  • In this paper, a 20W class multi-output QR flyback converter for auxiliary power supply was designed to stabilize 4 output voltages, and the efficiency and load characteristics were compared and analyzed. It was checked if each output affects other output characteristics through experiment. As a result, the experimental circuit reached a high efficiency of 82.5% or more at a load power of over 20W, and the maximum power loss was 2.6W. Consequently, it was confirmed that all of 4 output voltages of the multi-output QR flyback converter constructed in this paper were stabilized within 0.5% in full-load range, and each output was independently controlled in an electrically isolated state.

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

A Study A on Internal Loss Characteristics and Efficiency Improvement of Low Power Flyback Converter Using WBG Switch (WBG 스위치를 적용한 소용량 플라이백 컨버터의 내부손실 특성과 효율 개선에 관한 연구)

  • Ahn, Tae Young;Yoo, Jeong Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • In this paper, efficiency and loss characteristics of GaN FET were reported by applying it into the QR flyback converter. In particular, for the comparison of efficiency characteristics, QR flyback converter experimental circuits with Si FET and with GaN FET were separately produced in 12W class. As a result of the experiment, the experimental circuit of the QR flyback converter using GaN FET reached a high efficiency of 90% or more when the load power was 2W or more, and the maximum efficiency was observed to be about 92%, and the maximum loss power was about 1.1W. Meanwhile, the efficiency of the experimental circuit with Si FET increased as the input voltage increased, and the maximum efficiency was observed to be about 82% when the load power was 9W or higher, and the maximum loss power was about 2.8W. From the results, it is estimated that that in the case of the experimental circuit applying the GaN FET switch, the power conversion efficiency was improved as the switching loss and conduction loss due to on-resistance were reduced, and the internal loss due to the synchronous rectifier was minimized. Consequently, it is concluded that the GaN FET is suitable for under 20W class power supply unit as a high efficiency power switch.

A Study on PFC Buck-Boost AC-DC Converter of Soft Switching (소프트 스위칭형 PFC 벅-부스트 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.465-471
    • /
    • 2007
  • The system efficiency of the proposed Buck-Boost AC-DC converter is increased by soft switching method. The converter includes to merit of power factor correction (PFC) from sinusoidal control of input current. The switching behavior of control switches operates with soft switching by partial resonance, and then the proposed converter has high system efficiency with decrement of switching power loss. The input current waveform in proposed converter is got to be a sinusoidal form of discontinuous quasi-pulse row in proportion to magnitude of AC input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity. The output voltage of the converter is regulated by PWM control technique. The discontinuous mode action of current flowing into inductor makes to simplify control method and control components. The proposed PFC Buck-Boost converter is analyzed to compare with the conventional PFC Buck-Boost converter. Some computer simulative results and experimental results confirm to the validity of the analytical results.

High Step-up Active-Clamp Converter with an Input Current Doubler and a Symmetrical Switched-Capacitor Circuit

  • He, Liangzong;Zeng, Tao;Li, Tong;Liao, Yuxian;Zhou, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.587-601
    • /
    • 2015
  • A high step-up dc-dc converter is proposed for photovoltaic power systems in this paper. The proposed converter consists of an input current doubler, a symmetrical switched-capacitor doubler and an active-clamp circuit. The input current doubler minimizes the input current ripple. The symmetrical switched-capacitor doubler is composed of two symmetrical quasi-resonant switched-capacitor circuits, which share the leakage inductance of the transformer as a resonant inductor. The rectifier diodes (switched-capacitor circuit) are turned off at the zero current switching (ZCS) condition, so that the reverse-recovery problem of the diodes is removed. In addition, the symmetrical structure results in an output voltage ripple reduction because the voltage ripples of the charge/pump capacitors cancel each other out. Meanwhile, the voltage stress of the rectifier diodes is clamped at half of the output voltage. In addition, the active-clamp circuit clamps the voltage surges of the switches and recycles the energy of the transformer leakage inductance. Furthermore, pulse-width modulation plus phase angle shift (PPAS) is employed to control the output voltage. The operation principle of the converter is analyzed and experimental results obtained from a 400W prototype are presented to validate the performance of the proposed converter.

High-Frequency Flyback Transformer Linked PWM Power Conditioner with An Active Switched Capacitor Snubber

  • Mun, Sang-Pil;Kim, Soo-Wook;Joo, Seok-Min;Park, Young-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.7-15
    • /
    • 2008
  • A single active capacitor snubber-assisted soft-switching sinewave pulse modulation utility-interactive power conditioner with a three-winding flyback high frequency transformer link and a bidirectional active power switch in its secondary side has been proposed. With the aid of the switched-capacitor quasi-resonant snubber cell, the high frequency switching devices in the primary side of the proposed DC-to-AC sinewave power inverter can be turned-off with ZVS commutation. In addition to this, the proposed power conditioner in the DCM can effectively take the advantages of ZCS turn-on commutation. Its output port is connected directly to the utility AC power source grid. At the end, the prototype of the proposed HF-UPC is built and tested in experiment. Its power conversion conditioning and processing circuit with a high frequency flyback transformer link is verified and the output sinewave current is qualified in accordance with the power quality guidelines of the utility AC interactive power systems.

Isolated Bi-directional DC/DC Converter Using Quasi-Resonant (준공진 방식을 적용한 절연형 양방향 컨버터)

  • oh, Min Seuk;Noh, Yong Su;Ryu, Moo Young;Kim, Jun Gu;Won, Chung Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.101-102
    • /
    • 2013
  • 본 논문은 dual half bridge converter와 full-bridge converter가 결합된 절연형 양방향 컨버터를 제안하였다. 기존의 전류원 컨버터는 스위치가 턴-오프 시 전압 스파이크 문제가 발생한다. 이와 같은 문제를 해결하기 위해 절연형 양방향 컨버터에 공진 커패시터와 공진 인덕터를 추가하였다. 추가된 공진 소자들에 의해 준공진이 발생하고 이를 이용하여 스위치의 zero voltage switching (ZVS)조건을 충족시킬 수 있다. 그 결과 제안된 컨버터의 모든 스위치는 소프트 스위칭을 달성하고 전압 스파이크 문제를 해결 할 수 있다. 이를 이론적인 분석과 시뮬레이션을 통해 검증하였다.

  • PDF

A study on the high efficiency power supply for 550W class PDP (550W급 PDP용 고효율 전원 장치에 관한 연구)

  • Won, Ki-Sik;Ahn, Tae-Young;Park, No-Soung;Cho, In-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.459-462
    • /
    • 2005
  • Recently, the PDP is the most remarkable media for a next generation display device. But the PDP is a high power consumption device. It is to required a high efficiency power supply. We reported the experimental result the high efficiency PDP power supply for 550w class. The proposed converter is quasi-resonant flyback topology, it achieves soft-switching in the single-switch flyback converter. As a result, we realize to very high efficiency power supply for PDP of 95% at 400v dc input and 550Watt output.

  • PDF