• 제목/요약/키워드: Quarter-symmetric non-metric connection

검색결과 9건 처리시간 0.022초

ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제18권1호
    • /
    • pp.1-11
    • /
    • 2011
  • We define a quarter symmetric non-metric connection in a nearly Ken-motsu manifold and we study semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a quarter symmetric non-metric connection. Moreover, we discuss the integrability of the distributions on semi-invariant submanifolds of a nearly Kenmotsu manifold with a quarter symmetric non-metric connection.

SUBMANIFOLDS OF AN ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Haseeb, Abdul
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.91-104
    • /
    • 2011
  • We define a quarter-symmetric non-metric connection in an almost r-paracontact Riemannian manifold and we consider the submanifolds of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection. We also obtain the Gauss, Codazzi and Weingarten equations and the curvature tensor for the submanifolds of an almost r-paracontact Riemannian manifold endowed with a quarter-symmetric non-metric connection.

Hypersurfaces of an almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Non-metric Connection

  • Ahmad, Mobin;Haseeb, Abdul;Ozgur, Cihan
    • Kyungpook Mathematical Journal
    • /
    • 제49권3호
    • /
    • pp.533-543
    • /
    • 2009
  • We define a quarter symmetric non-metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric non-metric connection.

η-RICCI SOLITONS ON TRANS-SASAKIAN MANIFOLDS WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Bahadir, Oguzhan;Siddiqi, Mohd Danish;Akyol, Mehmet Akif
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.601-620
    • /
    • 2020
  • In this paper, firstly we discuss some basic axioms of trans Sasakian manifolds. Later, the trans-Sasakian manifold with quarter symmetric non-metric connection are studied and its curvature tensor and Ricci tensor are calculated. Also, we study the η-Ricci solitons on a Trans-Sasakian Manifolds with quartersymmetric non-metric connection. Indeed, we investigated that the Ricci and η-Ricci solitons with quarter-symmetric non-metric connection satisfying the conditions ${\tilde{R}}.{\tilde{S}}$ = 0. In a particular case, when the potential vector field ξ of the η-Ricci soliton is of gradient type ξ = grad(ψ), we derive, from the η-Ricci soliton equation, a Laplacian equation satisfied by ψ. Finally, we furnish an example for trans-Sasakian manifolds with quarter-symmetric non-metric connection admitting the η-Ricci solitons.

ON SOME PROPERTIES OF SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY TRANS-SASAKIAN MANIFOLD ADMITTING A QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Siddiqi, Mohd Danish
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.73-90
    • /
    • 2012
  • We define a quarter-symmetric non-metric connection in a nearly trans-Sasakian manifold and we consider semi-invariant submanifolds of a nearly trans-Sasakian manifold endowed with a quarter-symmetric non-metric connection. Moreover, we also obtain integrability conditions of the distributions on semi-invariant submanifolds.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A NON-METRIC 𝜙-SYMMETRIC CONNECTION

  • Jin, Dae Ho
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.619-632
    • /
    • 2017
  • We define a new connection on semi-Riemannian manifold, which is called a non-metric ${\phi}$-symmetric connection. Semi-symmetric non-metric connection and quarter-symmetric non-metric connection are two impotent examples of this connection. The purpose of this paper is to study the geometry of lightlike hypersurfaces of an indefinite Kaehler manifold with a non-metric ${\phi}$-symmetric connection.

INVARIANT AND SCREEN SEMI-INVARIANT LIGHTLIKE SUBMANIFOLDS OF A METALLIC SEMI-RIEMANNIAN MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Jasleen Kaur;Rajinder Kaur
    • Korean Journal of Mathematics
    • /
    • 제32권3호
    • /
    • pp.407-424
    • /
    • 2024
  • The present work aims to introduce the geometry of invariant and screen semi-invariant lightlike submanifolds of a metallic semi-Riemannian manifold equipped with a quarter symmetric non-metric connection. The study establishes the characterization of integrability and parallelism of the distributions inherent in these submanifolds. Additionally, the conditions for distributions defining totally geodesic foliations on the invariant and screen semi-invariant lightlike submanifolds of metallic semi-Riemannian manifold are specified.

ON ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD WITH A CERTAIN CONNECTION

  • Ahmad, Mobin;Haseeb, Abdul;Jun, Jae-Bok;Rahman, Shamsur
    • 대한수학회논문집
    • /
    • 제25권2호
    • /
    • pp.235-243
    • /
    • 2010
  • In a Riemannian manifold, the existence of a new connection is proved. In particular cases, this connection reduces to several symmetric, semi-symmetric and quarter symmetric connections, even some of them are not introduced so far. So, in this paper, we define a quarter symmetric semi-metric connection in an almost r-paracontact Riemannian manifold and consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold with that connection.

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.