• Title/Summary/Keyword: Quarter-Car

Search Result 70, Processing Time 0.024 seconds

1/4 Car Vibration Simulation Using An Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4차량 진동 시뮬레이션)

  • Baek, Woon-Kyung;Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.638-643
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was dong using a quarter car simulator to confirm the simulation results with the Spencer MR damper model

  • PDF

1/4 Car Vibration Simulation Using an Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4 차량 진동 시뮬레이션)

  • Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won;Baek, Woon-Kyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1016-1022
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was done using a quarter car simulator to confirm the simulation results with the Spencer MR damper model.

Design and fabrication of cost effective semi-active vehicular suspension system and testing on full scale quarter car suspension rig

  • N.P. Puneet;Radhe Shyam Tak Saini;Hemantha Kumar
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.87-96
    • /
    • 2024
  • Smart materials, such as magnetorheological (MR) fluid, have received considerable research attention in recent years due to their unique capabilities. MR fluid, which possesses a magnetic field controllable viscosity, has been extensively studied for vehicular applications with the aim of synthesizing optimal MR fluids, designing optimal MR dampers, and developing control strategies. However, a comprehensive study that primarily focuses on developing a cost-effective semi-active suspension system for a commercial vehicle in a developing nation is still lacking. This study addresses this gap by synthesizing an in-house MR fluid and studying its rheological properties. Subsequently, a novel single-sensor-based controller is developed and closed-loop simulations are conducted on a quarter-car semi-active model. Finally, the overall semi-active quarter-car suspension system is experimentally tested using a suspension test rig. The performance of the proposed system in terms of ride comfort and road holding is evaluated and is compared with simple control strategies. The dynamic range of the developed semi-active MR damper is found to be around 2.3, indicating a significant MR effect. The results suggest an intermediate response using the proposed acceleration-driven controller (ADV) at lower frequencies and similar performance to that of the skyhook controller at higher frequencies. The cost-effective methodology proposed in this study is effective and can be adapted for other semi-active engineering applications.

A Study on the Suspension System Modeling and Left Eigenstructure Assignment Control Design for Performance Improvement of an Automotive Suspension System (차량 현가시스템 성능 향상을 위한 현가장치 모델링 및 고유구조 지정 제어기 설계 연구)

  • Kim, Joo-Ho;Seo, Young-Bong;Choi, Jae-Weon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.81-88
    • /
    • 1999
  • A conventional quarter-car suspension system is a single input system with one actuator. Thus, the performance enhancement for ride quality could be limited. In this paper, we propose a novel automotive suspension system for a quarter-car with two independent actuators to improve the control performance. The left eigenstructure assignment method for multi-variable systems has been applied to the proposed novel quarter-car model.

  • PDF

Design of a Disturbance Observer based Control System to Ensure Robust Stability of Quarter-Car Suspensions (1/4 차량 현가 장치의 강인 안정성을 보장하는 외란관측기 기반의 제어 시스템 설계)

  • So, Sang Gyun;Ryoo, Jung Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.995-1001
    • /
    • 2016
  • The vehicle suspension system plays a very important part related with vehicle ride and handling. To improve the vehicle ride and handling many researches have been progressed from various damping parameter tuning techniques to the development of the electronic controlled suspension systems. In this paper, as one of the ride performance improvement a disturbance observer(DOB) based control system is applied to the quarter car vehicle model in order to show that the DOB can obtain good vibration isolation characteristics. First, the robust stability criterion for the DOB is introduced in detail, and then how DOB is applied to the 1/4 car vehicle model is represented, and finally to confirm the effectiveness of the DOB in vehicle ride performance improvement a computer simulation is carried out for various driving conditions.

Sweet Area Determination by Performance Sensitivity Analysis for an Automotive Vehicle Suspension (자동차용 현가장치의 성능감도해석에 의한 안정승차영역의 결정)

  • Park, Ho;Hahn, Chang-Su;Kim, Byeong-Woo;Kim, Dong-Gyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2003
  • Using a quarter car model, an analytic method for performance estimation of a vehicle suspension system with respect to frequency response, RMS response and performance index is presented. From frequency response function, compromization of response performance to the whole frequency range is verified and from RMS response and performance index, sensitivity of ride md handling characteristics are examined. Using a full car model, sweet area(stable ride area) are determined and performance sensitivity is estimated according to the change of feedback gains. In order to esimate the output sensitivity, response we is displayed using a 3-dimensional contour plot. Design data n suggested for optimal design parameter esimation, which maximize the performance of the given suspension system.

Performance Evaluation of a Quarter Car Suspension System Installed with MR Damper Featuring Bypass Flow Holes in Piston (피스톤 바이패스 유로가 있는 MR 댐퍼 장착 1/4 차량 현가시스템의 성능평가)

  • Kim, Wan Ho;Hwang, Yong Hoon;Park, Jhin Ha;Shin, Cheol-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.65-71
    • /
    • 2017
  • This work presents a comparative work on the ride comfort of a quarter car suspension system between two different magneto-rheological (MR) dampers; one is conventional type without bypass hole and the other is featured by several bypass holes in the piston. As a first step, two different MR dampers are designed on the basis of the governing equation and manufactured with same geometric dimensions except the bypass holes. After investigating the field-dependent damping properties, two dampers are installed to the quarter car suspension system. The suspension model is then derived and a sky-hook controller is implemented to identify vibration control performance under random road. It is shown that the suspension system with MR damper featured by the bypass holes can provide much better ride quality than the case without the bypass holes. This is validated via experimental implementation.

Integrated Suspension Control Using a Reduced Full-Car Model : HILS and Experiments (축소된 전차량 모델을 이용한 현가장치의 통합제어: HILS 및 실차실험)

  • 홍경태;손현철;이동락;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.105-105
    • /
    • 2000
  • In this paper, an integrated control of the semi-active suspension system using a reduced full-car model is investigated. By including the reduced full-car dynamics in the control law, the semi-act ive suspension system is able to control not only the vertical acceleration but also the roll and pitch mot ions of the car body, which is not Possible with a quarter-car model or a half-car model. The damping forces for the semi-active dampers are designed to track the damping forces of the skyhook controller designed from the reduced full car dynamics. Computer simulations and experimental results using a real car are also included.

  • PDF

Control of Semi-active Suspensions for Passenger Cars(II) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2187-2195
    • /
    • 1997
  • A semi-active suspension test system was designed and built for the experimental study. Vehicle parameters were estimated through tests and a quarter-car model was validated by comparing computer simulation results and laboratory test results. Alternative semi-active suspension control laws have been tested using the test system. Modulable damper used in this study is a "reverse" damper with 42 states which is controlled by a stepper motor. Experimental results have shown that semi-active suspensions have potential to improve ride quality of automobiles.tomobiles.

Confidence bevels of Measured Axle Load with a Consideration of Dynamic Loading (동적 부하를 고려한 계측 축중의 신뢰 범위)

  • 조일수;김성욱;이주형;박종연;이동훈;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.303-303
    • /
    • 2000
  • It is difficult to determine the static axle weight of a vehicle with weigh-in-motion systems which in absence measure instantaneous axle impact forces. The difficulty in determining a static axle weight results from dynamic effects induced by vehicle/road interactions. One method to improve the problem is to quantify a statistical confidence level for measured axle weight. The quarter-car model is used to simulate vehicle motion, Also, the road input to vehicle model can be characterized in statistical terms by PSD (power spectral density) of appropriate amplitude and frequency contents other than an exact spatial distribution. The confidence levels for the measured axle weight can be obtained by the random process analysis using both vehicle model and road input.

  • PDF