• 제목/요약/키워드: Quantum simulation

검색결과 236건 처리시간 0.03초

Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter

  • Park, Kyeongjin;Kim, Jinhwan;Lim, Kyung Taek;Kim, Junhyeok;Chang, Hojong;Kim, Hyunduk;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1991-1997
    • /
    • 2019
  • In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H* (10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3 × 3 ㎟ PIN diode coupled to a 3 × 3 × 3 ㎣ CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H* (10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H* (10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H* (10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H* (10) based on the G(E) function for the gamma spectra was then compared with H* (10) calculated by simulation. The relative difference of H* (10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H* (10) for a multiple isotope case was in the range of ±5.56%.

Wigner 함수 모델을 이용한 양자전송의 시뮬레이션 (Simulation of Quantum transport using wigner function model)

  • 김경염;이병호
    • 전자공학회논문지D
    • /
    • 제34D권3호
    • /
    • pp.93-104
    • /
    • 1997
  • Steady-state I-V characteristics of a resonant tunneling diode (RTD) is calculated by numerical analysis using quantum liouville equation based on wigner function which is derived from density operator. Modifications to the conventional discrete model are made to calculate more accurate quantum correlations. It is pointed out that we must include inelastic processes and the resistivity of the contacting layers to get a much more credible potential which can be theoretically obtained from the simple screening theory. The effects of spatially-varying effective mass is also checked briefly.

  • PDF

Numerical Investigation of Purcell Enhancement of the Internal Quantum Efficiency of GaN-based Green LED Structures

  • Choi, Young-Hwan;Ryu, Guen-Hwan;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.626-630
    • /
    • 2017
  • GaN-based green light-emitting diode (LED) structures suffer from low internal quantum efficiency (IQE), known as the "green gap" problem. The IQE of LED structures is expected to be improved to some extent by exploiting the Purcell effect. In this study, the Purcell effect on the IQE of green LED structures is investigated numerically using a finite-difference time-domain simulation. The Purcell factor of flip-chip LED structures is found to be more than three times as high as that of epi-up LED structures, which is attributed to the high-reflectance mirror near the active region in the flip-chip LED structures. When the unmodified IQE is 20%, the relative enhancement of IQE can be greater than 50%, without utilizing the surface-plasmon coupling effect. Based on the simulation results, the "green gap" problem of GaN-based green LEDs is expected to be mitigated significantly by optimizing flip-chip LED structures to maximize the Purcell effect.

Double Gate MOSFET Modeling Based on Adaptive Neuro-Fuzzy Inference System for Nanoscale Circuit Simulation

  • Hayati, Mohsen;Seifi, Majid;Rezaei, Abbas
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.530-539
    • /
    • 2010
  • As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, quantum mechanical effects are expected to become more and more important. Accurate quantum transport simulators are required to explore the essential device physics as a design aid. However, because of the complexity of the analysis, it has been necessary to simulate the quantum mechanical model with high speed and accuracy. In this paper, the modeling of double gate MOSFET based on an adaptive neuro-fuzzy inference system (ANFIS) is presented. The ANFIS model reduces the computational time while keeping the accuracy of physics-based models, like non-equilibrium Green's function formalism. Finally, we import the ANFIS model into the circuit simulator software as a subcircuit. The results show that the compact model based on ANFIS is an efficient tool for the simulation of nanoscale circuits.

Quantum Packet for the Next Generation Network/ISDN3

  • Lam, Ray Y. W.;Chan, Henry C. B.;Chen, Hui;Dillon, Tharam S.;Li, Victor O. K.;Leung, Victor C. M.
    • Journal of Communications and Networks
    • /
    • 제10권3호
    • /
    • pp.316-330
    • /
    • 2008
  • This paper proposes a novel method for transporting various types of user traffic effectively over the next generation network called integrated services digital network 3 (ISDN3) (or quantum network) using quantum packets. Basically, a quantum packet comprises one or more 53-byte quanta as generated by a "quantumization" process. While connection-oriented traffic is supported by fixed-size quantum packets each with one quantum to emulate circuit switching, connectionless traffic (e.g., IP packets and active packets) is carried by variable-size quantum packets with multiple quanta to support store-and-forward switching/routing. Our aim is to provide frame-like or datagram-like services while enabling cell-based multiplexing. The quantum packet method also establishes a flexible and extensible framework that caters for future packetization needs while maintaining backward compatibility with ATM. In this paper, we discuss the design of the quantum packet method, including its format, the "quantumization" process, and support for different types of user traffic. We also present an analytical model to evaluate the consumption of network resources (or network costs) when quantum packets are employed to transfer loss-sensitive data using three different approaches: cut-through, store-and-forward and ideal. Close form mathematical expressions are obtained for some situations. In particular, in terms of network cost, we discover two interesting equivalence phenomena for the cut-through and store-and-forward approaches under certain conditions and assumptions. Furthermore, analytical and simulation results are presented to study the system behavior. Our analysis provides valuable insights into the. design of the ISDN3/quantum network.

REPLACEMENT OF A PHOTOMULTIPLIER TUBE IN A 2-INCH THALLIUM-DOPED SODIUM IODIDE GAMMA SPECTROMETER WITH SILICON PHOTOMULTIPLIERS AND A LIGHT GUIDE

  • KIM, CHANKYU;KIM, HYOUNGTAEK;KIM, JONGYUL;LEE, CHAEHUN;YOO, HYUNJUN;KANG, DONG UK;CHO, MINSIK;KIM, MYUNG SOO;LEE, DAEHEE;KIM, YEWON;LIM, KYUNG TAEK;YANG, SHIYOUNG;CHO, GYUSEONG
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.479-487
    • /
    • 2015
  • The thallium-doped sodium iodide [NaI(Tl)] scintillation detector is preferred as a gamma spectrometer in many fields because of its general advantages. A silicon photomultiplier (SiPM) has recently been developed and its application area has been expanded as an alternative to photomultiplier tubes (PMTs). It has merits such as a low operating voltage, compact size, cheap production cost, and magnetic resonance compatibility. In this study, an array of SiPMs is used to develop an NaI(Tl) gamma spectrometer. To maintain detection efficiency, a commercial NaI(Tl) $2^{\prime}{\times}2^{\prime}$ scintillator is used, and a light guide is used for the transport and collection of generated photons from the scintillator to the SiPMs without loss. The test light guides were fabricated with polymethyl methacrylate and reflective materials. The gamma spectrometer systems were set up and included light guides. Through a series of measurements, the characteristics of the light guides and the proposed gamma spectrometer were evaluated. Simulation of the light collection was accomplished using the DETECT 97 code (A. Levin, E. Hoskinson, and C. Moison, University of Michigan, USA) to analyze the measurement results. The system, which included SiPMs and the light guide, achieved 14.11% full width at half maximum energy resolution at 662 keV.

A Class of Check Matrices Constructed from Euclidean Geometry and Their Application to Quantum LDPC Codes

  • Dong, Cao;Yaoliang, Song
    • Journal of Communications and Networks
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 2013
  • A new class of quantum low-density parity-check (LDPC) codes whose parity-check matrices are dual-containing matrices constructed based on lines of Euclidean geometries (EGs) is presented. The parity-check matrices of our quantum codes contain one and only one 4-cycle in every two rows and have better distance properties. However, the classical parity-check matrix constructed from EGs does not satisfy the condition of dual-containing. In some parameter conditions, parts of the rows in the matrix maybe have not any nonzero element in common. Notably, we propose four families of fascinating structure according to changes in all the parameters, and the parity-check matrices are adopted to satisfy the requirement of dual-containing. Series of matrix properties are proved. Construction methods of the parity-check matrices with dual-containing property are given. The simulation results show that the quantum LDPC codes constructed by this method perform very well over the depolarizing channel when decoded with iterative decoding based on the sum-product algorithm. Also, the quantum codes constructed in this paper outperform other quantum codes based on EGs.

Quantum-based exact pattern matching algorithms for biological sequences

  • Soni, Kapil Kumar;Rasool, Akhtar
    • ETRI Journal
    • /
    • 제43권3호
    • /
    • pp.483-510
    • /
    • 2021
  • In computational biology, desired patterns are searched in large text databases, and an exact match is preferable. Classical benchmark algorithms obtain competent solutions for pattern matching in O (N) time, whereas quantum algorithm design is based on Grover's method, which completes the search in $O(\sqrt{N})$ time. This paper briefly explains existing quantum algorithms and defines their processing limitations. Our initial work overcomes existing algorithmic constraints by proposing the quantum-based combined exact (QBCE) algorithm for the pattern-matching problem to process exact patterns. Next, quantum random access memory (QRAM) processing is discussed, and based on it, we propose the QRAM processing-based exact (QPBE) pattern-matching algorithm. We show that to find all t occurrences of a pattern, the best case time complexities of the QBCE and QPBE algorithms are $O(\sqrt{t})$ and $O(\sqrt{N})$, and the exceptional worst case is bounded by O (t) and O (N). Thus, the proposed quantum algorithms achieve computational speedup. Our work is proved mathematically and validated with simulation, and complexity analysis demonstrates that our quantum algorithms are better than existing pattern-matching methods.

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission

  • Chimalgi, Vinay U.;Nishat, Md Rezaul Karim;Yalavarthi, Krishna K.;Ahmed, Shaikh S.
    • Advances in nano research
    • /
    • 제2권3호
    • /
    • pp.157-172
    • /
    • 2014
  • The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.