Browse > Article
http://dx.doi.org/10.12989/anr.2014.2.3.157

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission  

Chimalgi, Vinay U. (Department of Electrical and Computer Engineering, Southern Illinois University at Carbondale)
Nishat, Md Rezaul Karim (Department of Electrical and Computer Engineering, Southern Illinois University at Carbondale)
Yalavarthi, Krishna K. (Department of Electrical and Computer Engineering, Southern Illinois University at Carbondale)
Ahmed, Shaikh S. (Department of Electrical and Computer Engineering, Southern Illinois University at Carbondale)
Publication Information
Advances in nano research / v.2, no.3, 2014 , pp. 157-172 More about this Journal
Abstract
The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.
Keywords
NEMO 3-D; atomistic simulation; tight-binding; Wurtzite nanowire; optical anisotropy; internal fields; electronic structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Haley, B.P., Lee, S., Luisier, M., Ryu, H., Saied, F., Clark, S., Bae, H. and Klimeck, G. (2009), "Advancing nanoelectronic device modeling through peta-scale computing and deployment on nanoHUB", J. Phys. Conf. Ser., 180, 012075.   DOI
2 Ahmed, S., Islam, S. and Mohammed, S. (2010), "Electronic structure of InN/GaN quantum dots: Multimillion atom tight-binding simulations", IEEE Tran. Elect. Dev., 57(1), 164-173.   DOI
3 Ahmed, S., Yalavarthi, K., Gaddipati, V., Muntahi, A., Sundaresan, S., Mohammed, S., Islam, S., Hindupur, R., John, D. and Ogden, J. (2011), "Quantum atomistic simulations of nanoelectronic devices using QuADS", Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, Springer, Eds. D. Vasileska and S. M. Goodnick, 405-441
4 Ahmed, S., Kharche, N., Rahman, R., Usman, M., Lee, S., Ryu, H., Bae, H., Clark, S., Haley, B., Naumov, M., Saied, F., Korkusinski, M., Kennel, R., Mclennan, M., Boykin, T.B. and Klimeck, G. (2009), "Multimillion atom simulations with NEMO 3-D", Meyers, Ed. Robert, Encyclopedia of Complexity and Systems Science, 6, Springer, New York.
5 Ahmed, S., Usman, M., Heitzinger, C., Rahman, R., Schliwa, A. and Klimeck, G. (2007), "Atomistic simulation of non-degeneracy and optical polarization anisotropy in zincblende quantum dots", Technical proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, January.
6 Bardoux, R., Guillet, T., Gil, B., Lefebvre, P., Bretagnon, T., Taliercio, T., Rousset, S. and Semond, F. (2008), "Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory", Phys. Rev. B, 77, 235315.   DOI
7 Hosoya, H., Kido, F. and Tokita, S. (1998), "A new view of hybridized atomic orbitals from n-dimensional world", Croat. Chem. Acta, 23(1-2), 169178.
8 Huang, C.T. , Song, J., Tsai, C.M., Lee, W.F., Lien, D.H., Gao, Z., Hao, Y., Chen, L.J. and Wang, Z.L. (2010), "Single-InN-nanowire nanogenerator with Up to 1 V output voltage", Adv. Mater., 22, 4008-4013.   DOI
9 Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M. and Boykin, T.B. (2007), "Atomistic simulation of realistically-sized nanodevices using NEMO 3-D-Part II: Applications", IEEE Tran. Elect. Dev., 54, 2090-2099.   DOI
10 Jancu, J.M., Bassani, F., Della Sala, F. and Scholz, R. (2002), "Transferable tight-binding parametrization for the group-III nitrides", Appl. Phys. Lett., 81, 4838.   DOI
11 Li, X., Wang, X., Bondokov, R., Morris, J., An, Y.H. and Sudarshan, T.S. (2005), "Micro/nanoscale mechanical and tribological characterization of SiC for orthopedic applications", J. Biomed. Mater. Res. Part B: Appl. Biomater., 72(B), 353-361.
12 Klimeck, G., Oyafuso, F., Boykin, T., Bowen, R. and Allmen, P. von. (2002), "Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots", Comput. Model. Eng. Sci., 3, 601.
13 Klimeck, G., Ahmed, S., Bae, H., Kharche, N., Rahman, R., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M. and Boykin, T. B. (2007), "Atomistic simulation of realisticallysized nanodevices using NEMO 3-D-Part I: Models and Benchmarks", IEEE Tran. Elect. Dev., 54, 2079-2089.
14 Keating, P. (1966), "Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure", Phys. Rev., 145.
15 Lin, Y.F., Song, J.H., Ding, Y., Liu, S.Y. and Wang, Z.L. (2008), "Piezoelectric nanogenerator using CdS nanowires", Appl. Phys. Lett., 92, 022105.   DOI
16 Lowdin, P.O. (1950), "On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals", J. Chem. Phys., 18, 365-375.   DOI
17 Nakamura, H.S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. and Chocho, K. (1998), "Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates", Appl. Phys. Lett., 72.
18 Lu, M.Y., Song, J.H., Lu, M.P., Lee, C.Y., Chen, L.J. and Wang, Z.L. (2009), "ZnO-ZnS hererojunction and ZnS nanowire arrays for electricity generation", ACS Nano., 3(2), 357-362.   DOI
19 Merrill, K., Yalavarthi K. and Ahmed, S. (2012), "Giant growth-plane optical anisotropy in c-plane wurtzite GaN/InN/GaN dot-in-nanowires", Superlat. Microstr., 52(5), 949-961.   DOI
20 Ma, R.M., Dai, L., Huo, H.B., Xu, W.J. and Qin, G.G. (2007), "High-performance logic circuits constructed on single CdS nanowires", Nano Lett., 7(11), 3300-3304.   DOI
21 Ponce, F. and Bour, D. (1997), "Nitride-based semiconductors for blue and green light-emitting devices", Nature, 386, 351-359.   DOI   ScienceOn
22 Prodhomme, P.Y., Beya-Wakata, A. and Bester, G. (2013), "Nonlinear piezoelectricity in wurtzite semiconductors", Phys. Rev. B, 88, 121304(R).   DOI
23 Shur, M.S. and Gaska, R. (2010), "Deep-ultraviolet light-emitting diodes", IEEE Tran. Elec. Dev., 57(1), 164-173.   DOI
24 Slater, J.C. and Koster, G.F. (1954), "Simplified LCAO method for the periodic potential problem", Phys. Rev., 94, 1498-1524.   DOI
25 Sundaresan, S., Gaddipati, V. and Ahmed, S. (2014), "Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: Multimillion-atom $sp^3d^5s$* tightbinding simulations", Int. J. Numer. Model., Online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jnm.2008.   DOI
26 Usman, M., Tan, Y.H.M., Ryu, H., Ahmed, S., Krenner, H.J., Boykin, T.B. and Klimeck, G. (2011) "Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million atom electronic structure calculations", Nanotechnol., 22, 315709.   DOI
27 Neophytou, N. (2008), "Quantum and atomistic effects in nanoelectronic transport devices", Ph.D. Dissertation, Purdue University, Purdue.
28 Yalavarthi, K., Chimalgi, V. and Ahmed, S. (2014), "How important is nonlinear piezoelectricity in wurtzite GaN/InN/GaN disk-in-nanowire LED structures?" Opt. Quant. Electron., 46, 925-933.   DOI