• Title/Summary/Keyword: Quantum mechanical calculation

Search Result 41, Processing Time 0.028 seconds

Quantum Mechanical Effects on Dynamical Behavior of Simple Liquids

  • Kim, Tae-Jun;Kim, Hyo-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2233-2236
    • /
    • 2011
  • We evaluate quantum-mechanical velocity autocorrelation functions from classical molecular dynamics simulations using quantum correction approaches. We apply recently developed approaches to supercritical argon and liquid neon. The results show that the methods provide a solution more efficient than previous methods to investigate quantum-mechanical dynamic behavior in condensed phases. Our numerical results are found to be in excellent agreement with the previous quantum-mechanical results.

Charges of TIP4P water model for mixed quantum/classical calculations of OH stretching frequency in liquid water

  • Jeon, Kiyoung;Yang, Mino
    • Rapid Communication in Photoscience
    • /
    • v.5 no.1
    • /
    • pp.8-10
    • /
    • 2016
  • The potential curves of OH bonds of liquid water are inhomogeneous because of a variety of interactions with other molecules and this leads to a wide distribution of vibrational frequency which hampers our understanding of the structure and dynamics of water molecules. Mixed quantum/classical (QM/CM) calculation methods are powerful theoretical techniques to help us analyze experimental data of various vibrational spectroscopies to study such inhomogeneous systems. In a type of those approaches, the interaction energy between OH bonds and other molecules is approximately represented by the interaction between the charges located at the appropriate interaction sites of water molecules. For this purpose, we re-calculated the values of charges by comparing the approximate interaction energies with quantum chemical interaction energies. We determined a set of charges at the TIP4P charge sites which better represents the quantum mechanical potential curve of OH bonds of liquid water.

Quantum Mechanical Studies for Proton Transfer in HOCl + HCl and H2O + ClONO2 on Water Clusters

  • Kim, Yong-Ho;Park, Chea-Yong;Kim, Kyung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1953-1961
    • /
    • 2005
  • We have performed high-level quantum mechanical calculation for multiple proton transfer in HOCl + HCl and $H_2O$ + $ClONO_2$ on water clusters, which can be used as a model of the reactions on ice surface in stratospheric clouds. Multiple proton transfer on ice surface plays crucial role in these reactions. The structures of the clusters with 0-3 water molecules and the transition state structures for the multiple proton transfer have been calculated. The energies and barrier heights of the proton transfer were calculated at various levels of theory including multi-coefficient correlated quantum mechanical methods (MCCM) that have recently been developed. The transition state structures and the predicted reaction mechanism depend very much on the level of theory. In particular, the HF level can not correctly predict the TS structure and barrier heights, so the electron correlation should be considered appropriately.

Quantum Mechanical Calculation of Spectroscopic Constants of ClO and $CIO^+$

  • Hae-Sun Song;Eun-Mo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.476-480
    • /
    • 1993
  • The ab initio calculations were performed on ClO and $ClO^+$ using the configuration interaction and M${\phi}$ller-Plesset methods of several different levels of approximation. Three different basis sets, 66 contracted Gaussian-type orbitals,6-31$G^*$ and 6-311$G^*$, were employed in this calculation. The results of calculation were compared with the experimental values of ClO. The values from the calculation with 66cGTO basis set gave excellent agreement with the experimental values. The spectroscopic constants of $ClO^+$ were also predicted.

Molecular Modeling and its Experimental Verification for the Catalytic Mechanism of Candida antarctica Lipase B

  • Kwon, Cheong-Hoon;Shin, Dae-Young;Lee, Jong-Ho;Kim, Seung-Wook;Kang, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1098-1105
    • /
    • 2007
  • Quantum mechanical and molecular dynamics simulation analysis has been performed on the model system for CALB (Candida antarctica lipase B) with esters to study the reaction mechanism and conformational preference of catalytic hydrolysis and the esterification reaction. Using quantum mechanical analysis, the ping-pong bi-bi mechanism was applied and energies and 3-dimensional binding configurations of the whole reaction pathways were calculated. Further molecular dynamics simulation analysis was performed on the basis of the transition state obtained from quantum mechanical study to observe the effect of structures of the substrates. Calculation results using substrates of different chain length and chiral configurations were compared for conformational preference. The calculated results showed very small influence on chain length, whereas chiral conformation showed big differences. Calculated results from molecular modeling studies have been compared qualitatively with the experimental data using racemic mixtures of (${\pm}$)-cis-4-acetamido-cyclopent-2-ene-1-ethyl acetate as substrates.

Hierarchical Circuit Visualization for Large-Scale Quantum Computing (대규모 양자컴퓨팅 회로에 대한 계층적 시각화 기법)

  • Kim, JuHwan;Choi, Byung-Soo;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.611-613
    • /
    • 2021
  • Recently, research and development of quantum computers, which exceed the limits of classical computers, have been actively carried out in various fields. Quantum computers, which use quantum mechanics principles in a way different from the electrical signal processing of classical computers, have various quantum mechanical phenomena such as quantum superposition and quantum entanglement. It goes through a very complicated calculation process compared to the calculation of a classical computer for performing an operation using its characteristics. In order to utilize each element efficiently and accurately, it is necessary to visualize the data before driving the actual quantum computer and perform error verification, optimization, reliability, and verification. However, when visualizing all the data of various elements configured inside the quantum computer, it is difficult to intuitively grasp the necessary data, so it is necessary to visualize the data selectively. In this paper, we visualize the data of various elements that make up a quantum computer, and hierarchically visualize the internal circuit components of a quantum computer that are complicatedly configured so that the data can be observed and utilized intuitively.

  • PDF

Numerical Calculation of Vibrational Transition Probability for the Forced Morse Oscillator by Use of the Anharmonic Boson Operators

  • Lee, Chang Sun;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.721-726
    • /
    • 2001
  • The vibrational transition probability expressions for the forced Morse oscillator have been derived using the commutation relations of the anharmonic Boson operators. The formulation is based on the collinear collision model with the exponential repulsive potential in the framework of semiclassical collision dynamics. The sample calculation results for H2+ He collision system, where the anharmonicity is large, are in excellent agreement with those from an exact, numerical quantum mechanical study by Clark and Dickinson, using the reactance matrix. Our results, however, are markedly different from those of Ree, Kim and Shin's in which they approximate the commutation operator I。 as unity, the harmonic oscillator limit. We have concluded that the quantum number dependence in I。 must be retained to get accurate vibrational transition probabilities for the Morse oscillator.

The effective model of the human Acetyl-CoA Carboxylase inhibition by aromatic-structure inhibitors

  • Minh, Nguyen Truong Cong;Thanh, Bui Tho;Truong, Le Xuan;Suong, Nguyen Thi Bang;Thao, Le Thi Xuan
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.309-319
    • /
    • 2017
  • The research investigates the inhibition of fatty acid biosynthesis of the human Acetyl-CoA Carboxylase enzyme by the aromatic-structure inhibitors (also known as ligands) containing variables of substituents, contributing an important role in the treatment of fatty-acid metabolic syndrome expressed by the group of cardiovascular risk factors increasing the incidence of coronary heart disease and type-2 diabetes. The effective interoperability between ligand and enzyme is characterized by a 50% concentration of enzyme inhibitor ($IC_{50}$) which was determined by experiment, and the factor of geometry structure of the ligands which are modeled by quantum mechanical methods using HyperChem 8.0.10 and Gaussian 09W softwares, combining with the calculation of quantum chemical and chemico-physical structural parameters using HyperChem 8.0.10 and Padel Descriptor 2.21 softwares. The result data are processed with the combination of classical statistical methods and modern bioinformatics methods using the statistical softwares of Department of Pharmaceutical Technology - Jadavpur University - India and R v3.3.1 software in order to accomplish a model of the quantitative structure - activity relationship between aromatic-structure ligands inhibiting fatty acid biosynthesis of the human Acetyl-CoA Carboxylase.

Elucidating H/D-Exchange Mechanism of Active Hydrogen in Aniline and Benzene-1,2-dithiol

  • Ahmed, Arif;Islam, Syful;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2021
  • In this study, the hydrogen/deuterium (HDX) exchange mechanism of active hydrogen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbon (PAH) dissolved in toluene and deuterated methanol by atmospheric pressure photoionization (APPI) is investigated. The comparison of the data obtained using APPI suggests that aniline and benzene-1,2-dithiol contain two exchanging hydrogens. The APPI HDX that best explains the experimental findings was investigated with the use of quantum mechanical calculations. The HDX mechanism is composed of a two-step reaction: in the first step, analyte radical ion gets deuterated, and in the second step, the hydrogen transfer occurs from deuterated analyte to de-deuterated methanol to complete the exchange reaction. The suggested mechanism provides fundamentals for the HDX technique that is important for structural identification with mass spectrometry. This paper is dedicated to Professor Seung Koo Shin for his outstanding contributions in chemistry and mass spectrometry.