Browse > Article
http://dx.doi.org/10.5478/MSL.2021.12.4.146

Elucidating H/D-Exchange Mechanism of Active Hydrogen in Aniline and Benzene-1,2-dithiol  

Ahmed, Arif (Research Department, Curia, Albany)
Islam, Syful (Dhaka Laboratory, Department of Environment)
Kim, Sunghwan (Department of Chemistry, Kyungpook National University)
Publication Information
Mass Spectrometry Letters / v.12, no.4, 2021 , pp. 146-151 More about this Journal
Abstract
In this study, the hydrogen/deuterium (HDX) exchange mechanism of active hydrogen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbon (PAH) dissolved in toluene and deuterated methanol by atmospheric pressure photoionization (APPI) is investigated. The comparison of the data obtained using APPI suggests that aniline and benzene-1,2-dithiol contain two exchanging hydrogens. The APPI HDX that best explains the experimental findings was investigated with the use of quantum mechanical calculations. The HDX mechanism is composed of a two-step reaction: in the first step, analyte radical ion gets deuterated, and in the second step, the hydrogen transfer occurs from deuterated analyte to de-deuterated methanol to complete the exchange reaction. The suggested mechanism provides fundamentals for the HDX technique that is important for structural identification with mass spectrometry. This paper is dedicated to Professor Seung Koo Shin for his outstanding contributions in chemistry and mass spectrometry.
Keywords
atmospheric pressure photoionization (APPI); hydrogen/deuterium exchange (HDX); potential energy surface; quantum mechanical calculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Blum, W.; Schlumpf, E.; Liehr, J. G.; Richter, W. J. Tetrahedron Lett. 1976, 17, 565, DOI: 10.1016/S0040-4039(00)77911-1.   DOI
2 Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1993, 115, 6317, DOI: 10.1021/ja00067a054.   DOI
3 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma,K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D.K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;Wong, M. W.; Gonzalez, C.; Pople, J. A. 2009. Gaussian 09, Revision C.01. In Gaussian, Inc.: Wallingford CT.
4 Ranasinghe, A.; Cooks, R. G.; Sethi, S. K. Org. Mass Spectrom. 1992, 27, 77, DOI: 10.1002/oms.1210 270203.   DOI
5 Rozman, M. J. Am. Soc. Mass Spectrom. 2005, 16, 1846, DOI: http://dx.doi.org/10.1016/j.jasms.2005.07.024.   DOI
6 Squires, R. R.; Bierbaum, V. M.; Grabowski, J. J.; DePuy, C. H. J. Am. Chem. Soc. 1983, 105, 5185. DOI: 10.1021/ja00354a001.   DOI
7 Stone, J. A. Org. Mass Spectrom. 1993, 28, 1119, DOI:10.1002/oms.1210281023.   DOI
8 Jaroszewski, L.; Lesyng, B.; Tanner, J. J.; McCammon, J. A. Chem. Phys. Lett. 1990, 175, 282, DOI: http://dx.doi.org/10.1016/0009-2614(90)80111-P.   DOI
9 Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. J. Am. Chem. Soc. 1995, 117, 12840, DOI: 10.1021/ja00156a023.   DOI
10 Becke, A. D. J. Chem. Phys. 1993, 98, 5648, DOI:10.1063/1.464913.   DOI
11 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785, DOI: 10.1103/physrevb.37.785.   DOI
12 Acter, T.; Kim, D.; Ahmed, A.; Ha, J. H.; Kim, S. J. Am. Soc. Mass. Spectrom. 2017, 28, 1687, DOI: 10.1007/s13361-017-1678-z.   DOI
13 Acter, T.; Cho, Y.; Kim, S.; Ahmed, A.; Kim, B.; Kim, S. J. Am. Soc. Mass Spectrom. 2015, 26, 1522, DOI:10.1007/s13361-015-1166-2.   DOI
14 Islam, A.; Kim, D.; Yim, U. H.; Shim, W. J.; Kim, S. J. Hazard. Mater. 2015, 296, 93, DOI: 10.1016/j.jhazmat.2015.04.042.   DOI
15 Kostyukevich, Y.; Kononikhin, A.; Popov, I.; Nikolaev, E. Anal. Chem. 2014, 86, 2595, DOI: 10.1021/ac4038202.   DOI
16 Kostyukevich, Y.; Kononikhin, A.; Popov, I.; Nikolaev, E. Anal. Chem. 2013, 85, 5330, DOI: 10.1021/ac4006606.   DOI
17 Choi, S.S.; Kim, J.C. Carbohydr. Res. 2010, 345, 408, DOI: 10.1016/j.carres.2009.11.028.   DOI
18 Kostyukevich, Y.; Acter, T.; Zherebker, A.; Ahmed, A.; Kim, S.; Nikolaev, E. Mass Spectrom. Rev. 2018, 37, 811, DOI: 10.1002/mas.21565.   DOI
19 Acter, T.; Lee, S.; Cho, E.; Jung, M. J.; Kim, S. J. Am. Soc. Mass. Spectrom. 2018, 29, 85, DOI: 10.1007/s13361-017-1831-8.   DOI
20 Cho, Y.; Ahmed, A.; Kim, S. Anal. Chem. 2013, 85, 9758, DOI: 10.1021/ac402157r.   DOI
21 Stewart, J. H.; Shapiro, R. H.; DePuy, C. H.; Bierbaum, V. M. J. Am. Chem. Soc. 1977, 99, 7650, DOI: 10.1021/ja00465a037.   DOI
22 Squires, R. R.; DePuy, C. H.; Bierbaum, V. M. J. Am. Chem. Soc. 1981, 103, 4256, DOI: 10.1021/ja00404a051.   DOI
23 Freiser, B. S.; Woodin, R. L.; Beauchamp, J. L. J. Am. Chem. Soc. 1975, 97, 6893, DOI: 10.1021/ja00856a064.   DOI
24 Englander, S. W. Science 1993, 262, 848, DOI: 10.1126/science.8235606.   DOI
25 Ausloos, P.; Lias, S. G. J. Am. Chem. Soc. 1981, 103, 3641, DOI: 10.1021/ja00403a005.   DOI
26 Ni, J.; Harrison, A. G. J. Am. Soc. Mass. Spectrom. 1992, 3, 853, DOI: 10.1016/1044-0305(92)80009-a.   DOI
27 Hawthorne, S. B.; Miller, D. J. Anal. Chem. 1985, 57, 694.   DOI
28 Martinsen, D. P.; Buttrill Jr, S. E. Org. Mass Spectrom. 1976, 11, 762, DOI: 10.1002/oms.1210110710.   DOI
29 Kato, S.; DePuy, C. H.; Gronert, S.; Bierbaum, V. M. J. Am. Soc. Mass Spectrom. 1999, 10, 840, DOI: 10.1016/S1044-0305(99)00058-6.   DOI
30 Yamamoto, Y.; Takamuku, S.; Sakurai, H. J. Am. Chem. Soc. 1978, 100, 2474. DOI: 10.1021/ja00476a034.   DOI
31 Niemeyer, E. D.; Brodbelt, J. S. J. Am. Soc. Mass Spectrom. 2007, 18, 1749, DOI: 10.1016/j.jasms.2007.07.009.   DOI
32 Kuck, D.; Ingemann, S.; de Koning, L. J.; Grutzmacher, H.-F.; Nibbering, N. M. M. Angew. Chem. 1985, 24, 693, DOI: 10.1002/anie.198506931.   DOI
33 Kuck, D. Mass Spectrom. Rev. 1990, 9, 583, DOI:10.1002/mas.1280090602.   DOI
34 Hunt, D. F.; Sethi, S. K. J. Am. Chem. Soc. 1980, 102, 6953, DOI: 10.1021/ja00543a009.   DOI
35 Hunt, D. F.; McEwen, C. N.; Upham, R. A. Anal. Chem. 1972, 44, 1292, DOI: 10.1021/ja00543a009   DOI
36 Wolff, J. C.; Laures, A. M. Rapid Commun. Mass Spectrom. 2006, 20, 3769, DOI: 10.1002/rcm.2782.   DOI