Browse > Article

Molecular Modeling and its Experimental Verification for the Catalytic Mechanism of Candida antarctica Lipase B  

Kwon, Cheong-Hoon (Department of Chemical and Biological Engineering, Korea University)
Shin, Dae-Young (Department of Chemical and Biological Engineering, Korea University)
Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Kang, Jeong-Won (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.7, 2007 , pp. 1098-1105 More about this Journal
Abstract
Quantum mechanical and molecular dynamics simulation analysis has been performed on the model system for CALB (Candida antarctica lipase B) with esters to study the reaction mechanism and conformational preference of catalytic hydrolysis and the esterification reaction. Using quantum mechanical analysis, the ping-pong bi-bi mechanism was applied and energies and 3-dimensional binding configurations of the whole reaction pathways were calculated. Further molecular dynamics simulation analysis was performed on the basis of the transition state obtained from quantum mechanical study to observe the effect of structures of the substrates. Calculation results using substrates of different chain length and chiral configurations were compared for conformational preference. The calculated results showed very small influence on chain length, whereas chiral conformation showed big differences. Calculated results from molecular modeling studies have been compared qualitatively with the experimental data using racemic mixtures of (${\pm}$)-cis-4-acetamido-cyclopent-2-ene-1-ethyl acetate as substrates.
Keywords
Molecular modeling; quantum mechanics; molecular dynamics simulation; Candida antarctica lipase B; reaction mechanism; enantiomer;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Hleffuer, F., T. Nonn, and K. Hult. 1998. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions. Biophys. J. 74: 1251-1262   DOI   ScienceOn
2 Hwan, D. J., M. J. Anderson, D. W. Denning, and E. B. Bauer. 2004. Inference of Aspergillusjumigatus pathways by computational genome analysis: Tricarboxylic acid cycle (TCA) and glyoxylate shunt. J. Microbiol. Biotechnol. 14: 74-80
3 Krishna, S. H. and N. G. Karanth. 2002. Lipases and Iipasecatalyzed esterification reactions in nonaqueous media. Catal. Rev. Sci. Eng. 44: 499-592   DOI   ScienceOn
4 Norin, M., K. Hult, A. Mattson, and T. Norin. 1993. Molecular modeling of chymotrypsin-substrate interactions: Calculation of enantioselectivity. Biocatalysis 7: 131-147   DOI
5 Stewart, J. J. P. 1989. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 10: 209-220   DOI
6 CAChe Workspace Ver. 6.1. 2003. Fujitsu
7 Nicklaus, M. C. 1996. Conformational energies calculated by the molecular mechanics program CHARMm. J. Comp. Chem. 18: 1056-1060
8 Colombo, G, S. Toba, and K. M. Merz Jr. 1999. Rationalization of the enantioselectivity of subtilisin in DMF. J. Am. Chem. Soc. 121: 3486-3493   DOI   ScienceOn
9 Lee, S. G., Y. J. Kim, S. I. Han, Y. K. Oh, S. H. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraint-based metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998   과학기술학회마을
10 Uppenberg, J., M. T. Hansen, S. Patkar, and T. A. Jones. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2: 293-308   DOI   ScienceOn
11 Discovery Studio Modeling 1.1. 2003. Accelrys Inc
12 Magnusson, A. 2005. Rational redesign of Candida antarctica lipase B. Thesis. AlbaNova University Center, Sweden
13 Anderson, E. M., K. M. Larsson, and O. Kirk. 1998. One biocatalyst - many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatal. Biotransform. 16: 181-204   DOI   ScienceOn
14 Lin, J. Q., S. M. Lee, and Y. M. Koo. 2005. Modeling and simulation of simultaneous saccharification and fermentation of paper mill sludge to lactic acid. J. Microbiol. Biotechnol. 15: 40-47   과학기술학회마을
15 Lanig, H., O. G. Othersen, F. R. Beierlein, U. Seidel, and T. Clark. 2006. Molecular dynamics simulations of the tetracycline-repressor protein: The mechanism of induction. J. Mol. Biol. 359: 1125-1136   DOI   ScienceOn
16 Raza, S., L. Fransson, and K. Hult. 2001. Enantioselectivity in Candida antarctica lipase B: A molecular dynamics study. Protein Sci. 10: 329-338   DOI   ScienceOn
17 Brooks, B. R., S. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. 1983. A program for macromolecular energy, minimization, and dynamics calculations. J. Compo Chem. 4: 187-217   DOI
18 Guallar, V., M. Jacobson, A. McDermott, and R. A. Friesner. 2004. Computational modeling of the catalytic reaction in triosephosphate isomerase. J. Mol. Biol. 337: 227-239   DOI   ScienceOn
19 Sharma, R., Y. Chisti, and U. C. Banerjee. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662   DOI   ScienceOn
20 Jung, J. Y., H. S. Yun, and E. K. Kim. 1997. Hydrolysis of olive oil by lipase, immobilized on hydrophobic support. J. Microbiol. Biotechnol. 7: 151-156
21 Monecke, P., R. Friedemann, S. Naumann, and R. Csuk. 1998. Molecular modelling studies on the catalytic mechanism of Candida rugosa lipase. J. Mol. Model. 4: 395-404   DOI   ScienceOn
22 Jang, S. and G. A. Voth. 1997. Simple reversible molecular dynamics algorithms for Nose-Hoover chain dynamics. J. Chem. Phys. 107: 9514-9526   DOI   ScienceOn
23 GAUSSIAN 03W. 2003. Gaussian Inc
24 Hyperchem Release 7.0 for Windows. 2002. Hypercube Inc
25 Ke, T., B. Tidor, and A. M. Klibanov. 1998. Molecularmodeling calculations of enzymatic enantioselectivity taking hydration into account. Biotechnol. Bioeng. 57: 741-745   DOI   ScienceOn
26 Parkkinen, T., T. K. Nevanen, A. Koivula, and J. Rouvinen. 2006. Crystal structures of an enantioselective fab-fragment in free and complex forms. J. Mol. Biol. 357: 471-480   DOI   ScienceOn
27 Houde, A., A. Kademi, and D. Leblanc. 2004. Lipases and their industrial applications: An overview. Appl. Biochem. Biotechnol. 118: 155-170   DOI