• Title/Summary/Keyword: Quantum coupling

Search Result 113, Processing Time 0.029 seconds

Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices

  • Ha, S.-K.;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.245-249
    • /
    • 2015
  • Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.

Multiple Quantum Coherence and Magic Angle in Solid NMR Spectroscopy

  • Shin, Yong-Jin;Kim, Nam-Su;Ryang, Kyung-Seung;Cho, Gyung-Goo;Jeong, Gwang-Woo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.127-139
    • /
    • 1999
  • In this paper we discussed how multiple quantum coherences evolve in the presence of anisotropic distribution of dipolar couplings. The magnitude of dipolar couplings were varied by changing the tile angle of crystal axis. The stronger was dipolar coupling, the higher was frequency of multiple quantum coherence. That is, the order of multiple quantum coherence varies in proportion to the magnitude of dipolar couplings. The theoretical prediction for the multiple quantum coherence at magic angle 54.7$^{\circ}$ in solid NMR spectroscopy was verified in this study. The excitation pattern of n-quantum coherence, which can induce the effective size to characterize spin system, is expected in a larger and more complicated spin system for understanding of the relation of dipolar coupling and multiple quantum coherence.

  • PDF

Effect of capacitive coupling in superconducting coplanar waveguide resonator

  • Baek, Geonwoo;Kim, Bongkeon;Arif, Sara;Doh, Yong-Joo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.6-9
    • /
    • 2021
  • Superconducting coplanar waveguide (SCPW) resonators with high quality (Q) factor are widely used for developing quantum sensors and quantum information processors. Here we conducted numerical simulations of SCPW resonators to investigate the relationship between the Q factor and the coupling capacitance of the resonator. Varying the geometrical shape of both ends and coupling parameters of the SCPW resonator resulted in a change of the coupling capacitances and the Q factor as well. Our calculation results indicate that the performance of the SCPW resonator is highly sensitive to the capacitive coupling and searching for an optimal coupling condition would be crucial for developing high-performance SCPW resonator.

Compatibility of Continuous Rabi Oscillation and Discontinuous Quantum Jumps (연속적 라비 진동과 불연속적 양자도약의 양립성)

  • Chough, Young-Tak;Kim, Kisik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.77-86
    • /
    • 2012
  • The connection between the continuousness of Rabi oscillation and the discontinuity of quantum jumps has long remained one of the conceptual difficulties since the discovery of the quantum physical paradigm. In this study, however, we demonstrate that the behavior of the atom-field composite system gradually changes from the continuous Rabi interaction to the discontinuous quantum jumps as the atom-field coupling strength is reduced. The reduction occurs through enlarging the quantization volume of the mode so that the mode approaches one of the infinitely many modes of the thermal background.

Suppression of Spin Dephasing in a Two-Dimensional Electron Gas with a Quantum Point Contact

  • Jeong, Jae-Seung;Lee, Hyun-Woo
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Spin-orbit coupling (SOC) is a source of strong spin dephasing in two- and three-dimensional semiconducting systems. We report that spin dephasing in a two-dimensional electron gas can be suppressed by introducing a quantum point contact. Surprisingly, this suppression was not limited to the vicinity of the contact but extended to the entire two-dimensional electron gas. This facilitates the electrical control of the spin degree of freedom in a two-dimensional electron gas through spin-orbit coupling.

Design of optical directional couplers using Nano-Scale MQWs (나노 양자우물구조를 이용한 광통신용 방향성 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.162-167
    • /
    • 2005
  • An optical directional coupler, which consists of quantum wells with nanothickness, is designed by using Modal Transmission Line Theory (MTLT). To demonstrate the validity and usefulness, the propagation characteristics and the coupling efficiencies are rigorously evaluated at nanoscale couplers, which consist of double quantum wells with different effective masses. The numerical result reveals that the coupling efficiency of nanoscale couplers is maximized at a coupling length 2052.3 nm, if the total electron energy is 83.9 meV. Furthermore, the coupler operates as a filter with narrower band as the barrier thickness increases.

Modal Transmission-Line Theory of Quantum-Well Couplers based on Schrodinger Equation (Schrodinger 방정식에 기초한 Qilantuin-Well 결합기의 모드전송선로 해석법)

  • 호광춘;윤인국;김영권
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.917-920
    • /
    • 1999
  • Modal transmission-line theory is described for guided electron waves in quantum-well structures. To demonstrate the validity and usefulness of this approach, we evaluate the propagation characteristics and the coupling properties of electron guiding couplers consisting of double quantum-wells (DQWs).

  • PDF

Coriolis Coupling Influence on the H+LiH Reaction

  • Zhai, Hongsheng;Li, Wenliang;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.151-157
    • /
    • 2014
  • We have reported the reaction probability, integral reaction cross section, and rate constant for the title system calculated with the aid of a time-dependent wave packet approach. The ab initio potential energy surface (PES) of Prudente et al. (Chem. Phys. Lett. 2009, 474, 18) is employed for the purpose. The calculations are carried out over the collision energy range of 0.05-1.4 eV for the two reaction channels of H + LiH ${\rightarrow}$ Li + $H_2$ and $H_b$ + $LiH_a$ ${\rightarrow}$ $LiH_b$ + $H_a$. The Coriolis coupling (CC) effect are taken into account. The importance of including the Coriolis coupling quantum scattering calculations are revealed by the comparison between the Coriolis coupling and the centrifugal sudden (CS) approximation calculations.