Browse > Article
http://dx.doi.org/10.9714/psac.2021.23.4.006

Effect of capacitive coupling in superconducting coplanar waveguide resonator  

Baek, Geonwoo (Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST))
Kim, Bongkeon (Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST))
Arif, Sara (Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST))
Doh, Yong-Joo (Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST))
Publication Information
Progress in Superconductivity and Cryogenics / v.23, no.4, 2021 , pp. 6-9 More about this Journal
Abstract
Superconducting coplanar waveguide (SCPW) resonators with high quality (Q) factor are widely used for developing quantum sensors and quantum information processors. Here we conducted numerical simulations of SCPW resonators to investigate the relationship between the Q factor and the coupling capacitance of the resonator. Varying the geometrical shape of both ends and coupling parameters of the SCPW resonator resulted in a change of the coupling capacitances and the Q factor as well. Our calculation results indicate that the performance of the SCPW resonator is highly sensitive to the capacitive coupling and searching for an optimal coupling condition would be crucial for developing high-performance SCPW resonator.
Keywords
superconductivity; coplanar waveguide resonator; quality factor; capacitive coupling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics", Nature 431, pp. 162-167, 2004   DOI
2 Y.-J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven, and S. De Franceschi, "Tunable supercurrent through semiconductor nanowires", Science 309, pp. 272, 2005   DOI
3 H.-S. Kim, T.-H. Hwang, N.-H. Kim, Y. Hou, D. Yu, H. S. Sim, and Y.-J. Doh, "Adjustable Quantum Interference Oscillations in Sb-Doped Bi2Se3 Topological Insulator Nanoribbons", ACS Nano 14, pp. 14118-14125, 2020.   DOI
4 L. Frunzio, A. Wallraff, D. Schuster, J. Majer, and R. Schoelkopf, "Fabrication and characterization of superconducting circuit QED devices for quantum computation", IEEE Transactions on Applied Superconductivity 15, pp. 860-863, 2005.   DOI
5 G. de Lange, B. van Heck, A. Bruno, D. J van Woerkom, A. Geresdi, S. R Plissard, E. P A M Bakkers, A. R Akhmerov, and L. DiCarlo, "Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements", Physical Review Letters 115, pp. 127002, 2015.   DOI
6 P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, "A broadband superconducting detector suitable for use in large arrays", Nature 425, pp. 817-821, 2003.   DOI
7 R.N. Simons, Coplanar waveguide circuits, components, and systems. (John Wiley & Sons, 2004).
8 E. Ginossar and E. Grosfeld, "Microwave transitions as a signature of coherent parity mixing effects in the Majorana-transmon qubit", Nature Communications 5, pp. 4772, 2014.   DOI
9 J. M. Sage, V. Bolkhovsky, W. D. Oliver, B. Turek, and P. B. Welander, "Study of loss in superconducting coplanar waveguide resonators", J. Appl. Phys. 109, pp. 063915, 2011.   DOI
10 B. Kim, M. Jung, J. Kim, J. Suh, and Y.-J. Doh, "Fabrication and characterization of superconducting coplanar waveguide resonators", Progress in Superconductivity and Cryogenics 22, pp. 10-13, 2020.   DOI
11 Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dreau, J. F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, "Strong Coupling of a Spin Ensemble to a Superconducting Resonator", Physical Review Letters 105, pp. 140502, 2010.   DOI
12 R. E. George, J. Senior, O.-P. Saira, J. P. Pekola, S. E. de Graaf, T. Lindstrom, Yu A. Pashkin, "Multiplexing superconducting qubit circuit for single microwave photon generation", J. Low Temp. Phys. 189, pp. 60, 2017.   DOI
13 M. Goppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla, L. Steffen, and A. Wallraff, "Coplanar waveguide resonators for circuit quantum electrodynamics", J. Appl. Phys. 104, pp. 113904, 2008.   DOI
14 K. Watanabe, K. Yoshida, T. Aoki, and S. Kohjiro, "Kinetic Inductance of Superconducting Coplanar Waveguides", Japanese Journal of Applied Physics 33, pp. 5708-5712, 1994.   DOI
15 A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden, N. K. Langford, and L. DiCarlo, "Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates", Appl. Phys. Lett. 106, pp. 182601, 2015.   DOI
16 B.-K. Kim, H.-S. Kim, Y. Yang, X. Peng, D. Yu, and Y.-J. Doh, "Strong Superconducting Proximity Effects in PbS Semiconductor Nanowires", ACS Nano 11, pp. 221-226, 2017.   DOI
17 K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck, and J. R. Petta, "Circuit quantum electrodynamics with a spin qubit", Nature 490, pp. 380-383, 2012.   DOI