• Title/Summary/Keyword: Quantum Confinement

Search Result 141, Processing Time 0.023 seconds

Measurement of III-V Compound Semiconductor Characteristics using the Contactless Electroreflectance Method

  • Yu, Jae-In;Choi, Soon-Don;Chang, Ho-Gyeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.535-538
    • /
    • 2011
  • The electromodulation methods of photoreflectanceand the related technique of contactless electroreflectance(CER) are valuable tools in the evaluation of important device parameters for structures such as heterojunction bipolar transistors, pseudomorphic high electron mobility transistors, and quantum dots(QDs). CER is a very general principle of experimental physics. Instead of measuring the optical reflectance of the material, the derivative with respect to a modulating electric field is evaluated. This procedure generates sharp, differential-like spectra in the region of interband (intersubband) transitions. We conduct electric-optical studies of both GaAs layers and InAs selfassembled QDs grown by molecular beam epitaxy. Strong GaAsbandgap energy is measured in both structures. In the case of lnAs monolayers in GaAs matrices, the strong GaAsbandgap energy is caused by the lateral quantum confinement.

Fabrication via Ultrasonication and Study of Silicon Nanoparticles

  • Kim, Jin Soo;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Photoluminescent porous silicon (PSi) were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 620 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon nanocrystal in porous silicon. As-prepared PSi was sonicated, fractured, and centrifuged in toluene to obtain photoluminescence silicon quantum dots. BET and BHJ methods were employed to study the specific surface area of as-prepared PSi. Optical characterization of red photoluminescent silicon nanocrystal was investigated by UV-vis and fluorescence spectrometer. Also SEM and TEM images of porous silicon and nanoparticles were investigated.

Analysis on the Gain and the Differential Gain due to the Carrier Capture/Escape Process in a Quantum Well Laser (양자우물 레이저의 캐리어 포획 및 탈출에 따른 광 이득과 광 미분 이득 고찰)

  • 방성만;정재용;서정하
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.17-27
    • /
    • 2000
  • In a SCH(separate confinement heterostructure) QW(quantum well) laser, we calculated the optical gain, the differential gain and recombination current in the QW and derived the bulk carrier density in the SCH region as a function of the QW current by using the analytical capture escape model. Based upon above relations, we found the optical gain and the differential gain correspond to the ratios of carrier and current injected into the QW.

  • PDF

New Trends in GaAs Epitaxial Techniques (GaAs 에피 성장 기술의 최근 연구 동향)

  • Park, Seong-Ju;Cho, Keong-Ik
    • Electronics and Telecommunications Trends
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 1988
  • Epilayer growing process has been recognized as a key technology for successful GaAs based devices and integrations. These may include HEMT, multiple quantum well structures, band gap engineering, and quantum confinement heterostructures. The fabrication of epilayers in these devices must meet very stringent requirements in terms of crystallinity, composition, film thickness and interface quality. In particular, the quality of interfaces is getting more important because the film thickness, and flatness, roughness and stability at interface of ultrathin films cause critical effects on the device performance. This article reviews the current status of modern epitaxial techniques which have been developed in the last few years. First, the new techniques PLE, GI, MEE, TSL based on MBE technique will be reviewed and their technical importance will be stressed. Secondly, MOMBE, GSMBE, CBE which combine the advantages of MBE and MOCVD will also be discussed. Thirdly, the new sophisticated epitaxial technique, ALE, of which mechanism is totally different from others, will also be reviewed. Finally, areas which should be exploited more extensively to accomplish these techniques will be addressed.

Quantum Confimement Effect in $SiO_2$ Thin Films Embedded with Semiconductor Microcrystallites

  • Wu-Xuemei;Chen-Jing;Ahuge-Lanjian
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.25-29
    • /
    • 1998
  • $SiO_2$ thin films embedded with Ge microcrystallites (Ge-$SiO_2$) were prepared by use of r.f. co-sputtering technique from a Ge, $SiO_2$ composite target. The size of Ge crystallites can been modulated by the experiment parameters. The optical absorption and non-linear optical properties of Ge-$SiO_2$ films were measured. The blue shift of the optical absorption edge, the saturated absorption and two-photon absorption under the condition of resonant absorption have been observed, and are discussed according to the quantum confinement effect.

  • PDF

Dual Gate-Controlled SOI Single Electron Transistor: Fabrication and Coulomb-Blockade

  • Lee, Byung T.;Park, Jung B.
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.208-211
    • /
    • 1997
  • We have fabricated a single-electron-tunneling(SET) transistor with a dual gate geometry based on the SOI structure prepared by SIMOX wafers. The split-gate is the lower-gate is the lower-level gate and located ∼ 100${\AA}$ right above the inversion layer 2DEG active channel, which yields strong carrier confinement with fully controllable tunneling potential barrier. The transistor is operating at low temperatures and exhibits the single electron tunneling behavior through nano-size quantum dot. The Coulomb-Blockade oscillation is demonstrated at 15mK and its periodicity of 16.4mV in the upper-gate voltage corresponds to the formation of quantum dots with a capacity of 9.7aF. For non-linear transport regime, Coulomb-staircases are clearly observed up to four current steps in the range of 100mV drain-source bias. The I-V characteristics near the zero-bias displays typical Coulomb-gap due to one-electron charging effect.

  • PDF

Fabrication of Water-Soluble CuInS2 Quantum Dots by Hot-injection Method and Phase Transfer Strategy

  • Deng, Chong;Fu, Bowen;Wang, Yanlai;Yang, Lin
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850114.1-1850114.7
    • /
    • 2018
  • Here we report an optimized hot-injection method and a phase transfer strategy for the synthesis of water-soluble $CuInS_2$ QDs with desired properties. The structure and morphology studies demonstrate that the resulting QDs are $CuInS_2$ tetragonal phase with well-defined facets. It is also found that the crystal size gradually increases with the increase of reaction temperature, while the surface of QDs with pre- and post-phase transfer is functionalized with hydrophobic and hydrophilic ligands, respectively. Spectroscopy measurements reveal the size-dependent optical properties of $CuInS_2$ QDs, demonstrating the quantum confinement effect in this system.

Nanowires for bio-device (나노와이어를 이용한 바이오 소자 응용기술)

  • Choi, Heon Jin;Park, Jung Min
    • Vacuum Magazine
    • /
    • v.3 no.3
    • /
    • pp.4-9
    • /
    • 2016
  • Nanowires have excellent properties such as high crystallinity, good mechanical properties, quantum confinement effect and high chemical activity, and thus are promising building blocks for many applications. Here we firstly review the fabrication of nanowires by top-down and bottom-up process. We then review nanowires as building blocks for bio applications including bio sensing, cell signaling and cell stimulating. It shows that nanowires are promising for the development of advanced bio technologies that can address ultrahigh sensitivity, and long term cell signaling and stimulating without cell damages.

The Effect of Laser Geometry and Material Parameters on the Single Mode Gain Difference in Quarter Wavelength Shifted DFB Laser above Threshold Current (문턱전류이상에서 구조 및 재료 변수들이 $\lambda$/4위상천이 DFB 레이저의 단일모드 이득차에 미치는 영향)

  • 이홍석;김홍국;김부균;이병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.75-84
    • /
    • 1999
  • Systematic studies for the effect of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the single mode gain difference and the frequency detuning are performed for $\lambda$/4 phase shifted DFB lasers above threshold. The above threshold characteristics are mainly determined by the linewidth enhancement factor, not by the confinement factor or the parameter defined by the product of the linewidth enhancement factor and the confinement factor. The normalized internal loss defined by the product of the internal loss and the cavity length mainly determines the above threshold characteristics compared to that of the internal loss or the cavity length alone. The effect of the cavity length on threshold characteristics is larger than that of the internal loss in the case of the same normalized internal loss. The above threshold characteristics of quantum well lasers are more resistant to the variations of the confinement factor and the normalized internal loss than those of bulk lasers due to the small linewidth enhancement factor.

  • PDF

Fabrication of Si quantum dots superlattice embedded in SiC matrix (SiC 매트릭스를 이용한 실리콘 양자점 초격자 박막 제조)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Cho, Jun-Sik;Chang, Bo-Yun;Ko, Chang-Hyun;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.163-166
    • /
    • 2009
  • 다중접합 초 고효율 태양전지 제조를 위해 SiC 매트릭스를 이용한 실리콘 양자점 초격자 박막을 제조하고 특성을 분석하였다. $SiC/Si_{1-x}C_x$(x ~ 0.31)로 실리콘 양자점 초격자 박막을 Si과 C target을 이용한 co-sputtering법으로 초격자 박막을 제조하고, $1000^{\circ}C$에서 20분간 열처리를 하였다. high resolution transmission electron microscopy 사진으로 약1~7nm 크기인 양자점 생성과 분포 밀도를 확인할 수 있었으며, grazing incident X-ray diffraction (GIXRD)를 통해서 Si(111)과 $\beta$-SiC(111)이 생성되었음을 알 수 있었다. Auger electron spectroscopy (AES)측정에서 stoichiometric SiC층과 Si-rich SiC층의 Si 원자농도 (56%, 69%)와 C 원자 농도 (44%, 31%)를 알 수 있었으며, Fourier transform infra-red spectroscopy (FTIR)측정에서 SiC 픽의 위치가 767에서 $800cm^{-1}$으로 이동하는 것을 알 수 있었다.

  • PDF