DOI QR코드

DOI QR Code

Fabrication of Water-Soluble CuInS2 Quantum Dots by Hot-injection Method and Phase Transfer Strategy

  • Deng, Chong (College of Physics Science and Engineering Hebei University) ;
  • Fu, Bowen (College of Physics Science and Engineering Hebei University) ;
  • Wang, Yanlai (Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region School of Physical Science and Technology Inner Mongolia University) ;
  • Yang, Lin (College of Physics Science and Engineering Hebei University)
  • Received : 2018.07.01
  • Accepted : 2018.08.29
  • Published : 2018.10.31

Abstract

Here we report an optimized hot-injection method and a phase transfer strategy for the synthesis of water-soluble $CuInS_2$ QDs with desired properties. The structure and morphology studies demonstrate that the resulting QDs are $CuInS_2$ tetragonal phase with well-defined facets. It is also found that the crystal size gradually increases with the increase of reaction temperature, while the surface of QDs with pre- and post-phase transfer is functionalized with hydrophobic and hydrophilic ligands, respectively. Spectroscopy measurements reveal the size-dependent optical properties of $CuInS_2$ QDs, demonstrating the quantum confinement effect in this system.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Hebei University

References

  1. P. V. Kamat, J. Phys. Chem. C 112, 18737 (2008). https://doi.org/10.1021/jp806791s
  2. P. V. Kamat, K. Tvrdy, D. R. Baker and J. G. Radich, Chem. Rev. 110, 6664 (2010). https://doi.org/10.1021/cr100243p
  3. Z. Yang, C. Y. Chen, C. W. Liu and H. T. Chang, Chem. Commun. 46, 5485 (2010). https://doi.org/10.1039/c0cc00642d
  4. G. H. Carey, A. L. Abdelhady, Z. Ning, S. M. Thon, O. M. Bakr and E. H. Sargent, Chem. Rev. 115, 12732 (2015). https://doi.org/10.1021/acs.chemrev.5b00063
  5. J. Yang, M. K. Choi, D. H. Kim and T. Hyeon, Adv. Mater. 28, 1176 (2016). https://doi.org/10.1002/adma.201502851
  6. O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. Gao, A. J. Nozik and M. C. Beard, Science 334, 1530 (2011). https://doi.org/10.1126/science.1209845
  7. T. L. Li, Y. L. Lee and H. S. Teng, Energy Environ. Sci. 5, 5315 (2012). https://doi.org/10.1039/C1EE02253A
  8. H. McDaniel, N. Fuke, J. M. Pietryga and V. I. Klimov, J. Phys. Chem. Lett. 4, 355 (2013). https://doi.org/10.1021/jz302067r
  9. D. R. Baker and P. V. Kamat, Adv. Funct. Mater. 19, 805 (2009). https://doi.org/10.1002/adfm.200801173
  10. H. Zhang, K. Cheng, Y. M. Hou, Z. Fang, Z. X. Pan, W. J. Wu, J. L. Hua and X. H. Zhong, Chem. Commun. 48, 11235 (2012). https://doi.org/10.1039/c2cc36526j
  11. W. Ma, J. M. Luther, H. Zheng, Y. Wu and A. P. Alivisatos, Nano Lett. 9, 1699 (2009). https://doi.org/10.1021/nl900388a
  12. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin, Nano Lett. 9, 4221 (2009). https://doi.org/10.1021/nl902438d
  13. Z. Y. Peng, Y. L. Liu, Y. H. Zhao, K. Q. Chen, Y. Q. Cheng, V. Kovalev and W. Chen, J. Alloys Compd. 587, 613 (2014). https://doi.org/10.1016/j.jallcom.2013.10.247
  14. Z. X. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. H. Zhong and J. Bisquert, J. Am. Chem. Soc. 136, 9203 (2014). https://doi.org/10.1021/ja504310w
  15. M. Booth, A. P. Brown, S. D. Evans and K. Critchley, Chem. Mater. 24, 2064 (2012). https://doi.org/10.1021/cm300227b
  16. J. S. Gardner, E. Shurdha and L. D. Lau, J. Nanopart. Res. 10, 633 (2008). https://doi.org/10.1007/s11051-007-9294-7
  17. R. G. Xie, M. Rutherford and X. G. Peng, J. Am. Chem. Soc. 131, 5691 (2009). https://doi.org/10.1021/ja9005767
  18. H. Z. Zhong, Y. Zhou, M. F. Ye, Y. J. He, J. P. Ye, C. He, C. H. Yang and Y. F. Li, Chem. Mater. 20, 6434 (2008). https://doi.org/10.1021/cm8006827
  19. W. J. Yue, S. K. Han, R. X. Peng, W. Shen, H. W. Geng, F. Wu, S. W. Tao and M. T. Wang, J. Mater. Chem. 20, 7570 (2010). https://doi.org/10.1039/c0jm00611d
  20. S. Y. Liu, H. Zhang, Y. Qiao and X. G. Su, RSC Adv. 2, 819 (2012). https://doi.org/10.1039/C1RA00802A
  21. Y. L. Liu, T. Chen, Z. Y. Peng, L. Wu, K. Q. Chen, P. Zhou, L. L. Wang and W. Chen, J. Alloys Comp. 658, 76 (2016). https://doi.org/10.1016/j.jallcom.2015.10.183
  22. H. Zhong, S. S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li and G. D. Scholes, ACS Nano. 4, 5253 (2010). https://doi.org/10.1021/nn1015538
  23. C. Xia, L. Cao, W. Liu, G. Su, R. Gao, H. Qu, L. Shi and G. He, Cryst. Eng. Commun. 16, 7469 (2014). https://doi.org/10.1039/C4CE00889H
  24. M. C. Chang and J. Tanaka, Biomaterials 23, 4811 (2002). https://doi.org/10.1016/S0142-9612(02)00232-6
  25. R. Chen, B. Han, L. Yang, Y. Yang, Y. Xu and Y. Mai, J. Lumin. 172, 197 (2016). https://doi.org/10.1016/j.jlumin.2015.12.006
  26. D. C. Jones, C. M. Carr, W. D. Cooke and D. M. Lewis, Text. Res. J. 68, 739 (1998). https://doi.org/10.1177/004051759806801007
  27. Z. M. Hao, Y. Cui and G. Wang, Mater. Lett. 146, 77 (2015). https://doi.org/10.1016/j.matlet.2015.02.015
  28. M. Michalska, A. Aboulaich, G. Medjahdi, R. Mahiou, S. Jurga and R. Schneider, J. Alloys Compd. 645, 184 (2015). https://doi.org/10.1016/j.jallcom.2015.04.162