• Title/Summary/Keyword: Quantitative real time RT-PCR

Search Result 306, Processing Time 0.028 seconds

Up-Regulation of $p27^{Kip1}$ Protects hES Cells from Differentiation-Associated and Caspase 3-Dependent Apoptosis

  • Park, So-Hyun;Kim, Min Kyoung;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1790-1794
    • /
    • 2012
  • Recently, it has been suggested that $p27^{Kip1}$, the cell cycle regulatory protein, plays a pivotal role in the progression of normal differentiation in murine embryonic stem (mES) cells. In the current study, we investigated the role of $p27^{Kip1}$ in the regulation of differentiation and apoptotic induction using Western blotting, quantitative real-time RT-PCR, and small interfering RNA (siRNA) assays and confocal laser scanning microscopic analysis of H9 human ES (hES) cells and H9-derived embryoid bodies (EBs) grown for 10 ($EB_{10}$) and 20 days ($EB_{20}$). Our results demonstrate that the proteins $p27^{Kip1}$ and cyclin D3 are strongly associated with cellular differentiation, and, for the first time, show that up-regulation of $p27^{Kip1}$ protects hES cells from inducing differentiation-associated and caspase 3-dependent apoptosis.

Analysis of HBeAg and HBV DNA Detection in Hepatitis B Patients Treated with Antiviral Therapy (항 바이러스 치료중인 B형 간염환자에서 HBeAg 및 HBV DNA 검출에 관한 분석)

  • Cheon, Jun Hong;Chae, Hong Ju;Park, Mi Sun;Lim, Soo Yeon;Yoo, Seon Hee;Lee, Sun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • Purpose Hepatitis B virus (hepatitis B virus, HBV) infection is a worldwide major public health problem and it is known as a major cause of chronic hepatitis, liver cirrhosis and liver cancer. And serologic tests of hepatitis B virus is essential for diagnosing and treating these diseases. In addition, with the development of molecular diagnostics, the detection of HBV DNA in serum diagnoses HBV infection and is recognized as an important indicator for the antiviral agent treatment response assessment. We performed HBeAg assay using Immunoradiometric assay (IRMA) and Chemiluminescent Microparticle Immunoassay (CMIA) in hepatitis B patients treated with antiviral agents. The detection rate of HBV DNA in serum was measured and compared by RT-PCR (Real Time - Polymerase Chain Reaction) method Materials and Methods HBeAg serum examination and HBV DNA quantification test were conducted on 270 hepatitis B patients undergoing anti-virus treatment after diagnosis of hepatitis B virus infection. Two serologic tests (IRMA, CMIA) with different detection principles were applied for the HBeAg serum test. Serum HBV DNA was quantitatively measured by real-time polymerase chain reaction (RT-PCR) using the Abbott m2000 System. Results The detection rate of HBeAg was 24.1% (65/270) for IRMA and 82.2% (222/270) for CMIA. Detection rate of serum HBV DNA by real-time RT-PCR is 29.3% (79/270). The measured amount of serum HBV DNA concentration is $4.8{\times}10^7{\pm}1.9{\times}10^8IU/mL$($mean{\pm}SD$). The minimum value is 16IU/mL, the maximum value is $1.0{\times}10^9IU/mL$, and the reference value for quantitative detection limit is 15IU/mL. The detection rates and concentrations of HBV DNA by group according to the results of HBeAg serological (IRMA, CMIA)tests were as follows. 1) Group I (IRMA negative, CMIA positive, N = 169), HBV DNA detection rate of 17.7% (30/169), $6.8{\times}10^5{\pm}1.9{\times}10^6IU/mL$ 2) Group II (IRMA positive, CMIA positive, N = 53), HBV DNA detection rate 62.3% (33/53), $1.1{\times}10^8{\pm}2.8{\times}10^8IU/mL$ 3) Group III (IRMA negative, CMIA negative, N = 36), HBV DNA detection rate 36.1% (13/36), $3.0{\times}10^5{\pm}1.1{\times}10^6IU/mL$ 4) Group IV(IRMA positive, CMIA negative, N = 12), HBV DNA detection rate 25% (3/12), $1.3{\times}10^3{\pm}1.1{\times}10^3IU/mL$ Conclusion HBeAg detection rate according to the serological test showed a large difference. This difference is considered for a number of reasons such as characteristics of the Ab used for assay kit and epitope, HBV of genotype. Detection rate and the concentration of the group-specific HBV DNA classified serologic results confirmed the high detection rate and the concentration in Group II (IRMA-positive, CMIA positive, N = 53).

Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts (쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할)

  • Oh, Myung-Ju;Kim, So-Hyeon;Kim, Ji-Hyun;Jhun, Byung H.
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.772-782
    • /
    • 2020
  • Skeletal muscle differentiation or myogenesis is important to maintain muscle mass and metabolic homeostasis. Muscle-specific microRNAs (miRNAs) are known to play a critical role in skeletal myogenic differentiation. In this study, we examined the expression profiling of miRNAs during myogenic differentiation in rat L6 myoblasts using rat miRNA microarrays. We identified the upregulated expression of miR-128 as well as several well-known myogenic miRNAs, including miR-1, miR-133b, and miR-206. We additionally confirmed the increased expression of miR-128 observed on microarray through quantitative real-time PCR (qRT-PCR), which showed similarly upregulated expression of both primary miR-128 and mature miR-128, consistent with the microarray findings. Furthermore, transfection of miR-128 into rat L6 myoblasts induced gene expression of myogenic markers such as muscle creatine kinase (MCK), myogenin, and myosin heavy chain (MHC). Protein expression of MHC was increased as well. Inhibition of miR-128 by inhibitory peptide nucleic acids (PNAs) blocked the expression of those myogenic markers. In addition, the transfection of miR-128 into rat L6 myoblasts enhanced the phosphorylation of Erk and Akt proteins stimulated by insulin, while simultaneously reversing the inhibited phosphorylation of Erk and Akt due to insulin resistance. These findings suggest that miR-128 may play important roles in myogenic differentiation and insulin signaling.

Differential Expression of Isoflavone Biosynthetic Genes in Soybean During Germination (콩 발아기간 중 isoflavone 생합성 유전자 발현 변이)

  • Lim, Jin-Su;Kim, Seo-Young;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.365-374
    • /
    • 2021
  • Soybean isoflavones are essential secondary metabolites synthesized through the phenylpropanoid pathway, and they play vital roles in human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Therefore, the present study analyzed the content of isoflavone and expression of six key genes involved in its biosynthesis (i.e., CHS6, HID, IF7GT, IF7MaT, GmIMaT1, and GmIMaT3) during soybean seed germination. Isoflavone content was quantified using high-performance liquid chromatography, and isoflavone biosynthetic gene expression was analyzed using quantitative real-time PCR. Two cultivars, namely 'Daepung2ho' and 'Pungsannamulkong', which are high- and low-isoflavone cultivars, respectively, were used. Isoflavone accumulation gradually increased with the progression of the germination period. As such, malonyl glucosides accounted for over 80% of the total content, whereas acetyl glucosides were present at trace amounts. Transcriptional analysis of isoflavone biosynthetic genes demonstrated expression patterns parallel to isoflavone content; however, there was no clear correlation between isoflavone content and gene expression. Moreover, most isoflavone biosynthetic genes showed different expression patterns depending on the individual gene or genotypes. Among the tested genes, HID showed consistently higher expression, except at 3 days after germination, and its expression was upregulated in 'Daepung2ho' but downregulated in 'Pungsannamulkong'. In addition, all tested genes exhibited different expression patterns between cotyledons and hypocotyls and responded differently to the germination period. These findings suggest that the expression levels of isoflavone biosynthetic genes are not consistent with the germination period and appear to be genotype-dependent.

Modulation of antioxidant defense system in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A (비스페놀 A에 대한 기수산 물벼룩의 항산화 시스템의 변화)

  • Yoo, Jewon;Cha, Jooseon;Kim, Hyeri;Pyo, Jinwoo;Lee, Young-Mi
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.72-81
    • /
    • 2019
  • Bisphenol A (BPA), a representative endocrine disrupting chemicals, has adverse effects on growth, development and reproduction in aquatic organisms. The object of this study was to investigate the modulation of antioxidant enzyme-coding genes using quantitative real time RT-PCR (qRT-PCR), enzyme activity and total protein content, to understand oxidative stress responses after exposure to BPA for 48 h in brackish water flea Diaphanosoma celebensis. The BPA ($3mg\;L^{-1}$) significantly upregulated the expression of Cu/Zn-SOD, Mn-SOD, and catalase (CAT) mRNA. Three GST isoforms (GST-kappa, GST-mu, and GST-theta) mRNA levels significantly increased at the rate of $0.12mg\;L^{-1}$ of BPA. In particular, GST-mu showed the highest expression level, indicating its key role in antioxidant response to BPA. SOD activity was induced with a concentration-dependent manner, and total protein contents was reduced. These findings indicate that BPA can induce oxidative stress in this species, and these antioxidants may be involved in cellular protection against BPA exposure. This study will provide a better understanding of molecular mode of action of BPA toxicity in aquatic organisms.

Prognostic Relevance of Human Telomerase Reverse Transcriptase (hTERT) Expression in Patients with Gall Bladder Disease and Carcinoma

  • Deblakshmi, Raj Kumari;Deka, Manab;Saikia, Anjan Kumar;Sharma, Bir Kumar;Singh, Nidhi;Das, NN;Bose, Sujoy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2923-2928
    • /
    • 2015
  • Background: Gallbladder carcinoma (GBC) has been stated as an Indian disease, with the highest number of cases being reported from certain districts of northeast India, which has an ethnically distinct population. Unfortunately there are no scientific reports on the underlying molecular mechanisms associated with the pathogenesis of the disease from this region. Aim: The present study evaluated the role of differential expression of human telomerase reverse transcriptase (hTERT) in the development of gall bladder anomalies. Materials and Methods: Blood and tissue samples were collected from patients undergoing routine surgical resection for clinically proven cases of gallbladder disease {cholelithiasis (CL, n=50), cholecystitis (CS, n=40) and GBC (n=30) along with adjacent histopathologically proved non-neoplastic controls (n=15)} with informed consent. Whole blood was also collected from age and sex matched healthy controls (n=25) for comparative analysis. Differential hTERT mRNA expression was evaluated by semi-quantitative rt-PCR and real-time PCR based analysis using ${\beta}$-actin as an internal control. Evaluation of differential hTERT protein expression was studied by Western blot analysis and immunoflourescence. Statistical analysis for differential expression and co-relation was performed by SPSSv13.0 software. Results: Gallbladder anomalies were mostly prevalent in females. The hTERT mRNA and protein expression increased gradiently from normal

Serum miRNA Panel in Egyptian Patients with Chronic Hepatitis C Related Hepatocellular Carcinoma

  • Khairy, Ahmed;Hamza, Iman;Shaker, Olfat;Yosry, Ayman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2699-2703
    • /
    • 2016
  • Background: Primary hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. MicroRNAs (miRNAs) have great HCC diagnostic potential and circulating miRNAs have been reported as promising biomarkers for various pathologic conditions. Aim: To explore the potential benefit of serum miR-126, miR-129, miR-155, miR-203 and miR-223 as non-invasive diagnostic markers of hepatitis C virus (HCV)-related HCC. Materials and Methods: The expression of miRNA was evaluated using real-time quantitative RT-PCR in 78 serum samples (30 $treatment-na{\ddot{i}}ve$ chronic HCV, 25 post-HCV compensated cirrhosis and 23 $treatment-na{\ddot{i}}ve$ HCC cases). Results: Comparing miRNA fold changes in the HCC group vs the non HCC groups, there was significant fold decrease in miR-126 (P= 0.034), miR-129 (P= 0.006), miR-155 (P= 0.011), miR-203 (P<0.001) and miR-223 (P= 0.013). The highest AUC to differentiate HCC patients from non-HCC was 0.76 for miR-203. Conclusions: Among studied miRNAs, serum miR-203 has the highest potential as a non-invasive biomarker of HCC.

Anti-aging Effect of Cycloheterophyllin in UVA-irradiated Dermal Fibroblasts (자외선 조사에 의해 노화된 섬유아세포에서 Cycloheterophyllin의 항노화 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.285-290
    • /
    • 2019
  • This study was carried out to identify the skin anti-aging effect of cycloheterophyllin on dermal fibroblasts. To elucidate anti-aging effects of cycloheterophyllin on dermal fibroblasts, I measured cell viability, mRNA expressions, and Collagen, type I/matrix metallopeptidase 1(MMP1)-ELISA assay. In this study, I investigated the effects of cycloheterophyllin on Collagen, type I, alpha 1(COL1A1)/Collagen, type III, alpha 1(COL3A1)/MMP1/Superoxide dismutases/Catalase(CAT) mRNA expressions and Collagen, type I/MMP1 protein production. Quantitative Real-time RT-PCR showed that cycloheterophyllin increased mRNA level of COL1A1/COL3A1/CAT genes and collagen, type I protein by ELISA assay compared to UVA-treated dermal fibroblasts. Furthermore MMP1 mRNA and protein expressions were decreased by cycloheterophyllin treatment. These observations revealed that cycloheterophyllin increased anti-aging effects in dermal fibroblasts. Therefore, I identified the anti-aging effects of cycloheterophyllin, and these results showed that the cycloheterophyllin can be a considerable potent ingredient for skin anti-aging. Based on this, I anticipated further researches about cycloheterophyllin for mechanism to develop not only cosmetics but for healthcare food or medicine.

Inhibition of Melanogenesis by Abietatriene from Vitex Trifolia Leaf Oil

  • Lee, Hong Gu;Kim, Tae Yoon;Jeon, Jung Hoon;Lee, Sang Hwa;Hong, Yoon Ki;Jin, Mu Hyun
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.252-258
    • /
    • 2016
  • Vitex trifolia L. has been used traditionally to treat various illnesses, such as inflammation, headache, migraine, and gastrointestinal infections. We analyzed and evaluated the composition of V. trifolia leaf oil. Based on the results, we isolated abietatriene from V. trifolia leaf oil and investigated the effect of V. trifolia leaf oil and its active compound abietatriene on melanogenesis in B16F10 melanoma cells. They significantly decreased melanin contents and melanogenic factors, such as tyrosinase, TRP-1, TRP-2, and MITF dose-dependently in both protein and mRNA levels. Protein and mRNA expressions were determined by Western blot analysis and quantitative real time RT-PCR. Findings indicate that V. trifolia leaf oil and abietatriene reduce melanogenesis by regulating the expression of melanogenic factors. These results suggest that V. trifolia leaf oil and abietatriene could comprise a useful therapeutic agent for treating hyperpigmentation and used as effective skin-whitening agents.

Deregulation of MTDH Gene Expression in Gastric Cancer

  • Baygi, Modjtaba Emadi;Nikpour, Parvaneh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2833-2836
    • /
    • 2012
  • Aim: Gastric cancer is the third most frequent cause of cancer mortality worldwide. In Iran, it is one of the leading causes at the national level. Localized at chromosome 8q22, the human MTDH gene has been reported to be over-expressed in a spectrum of malignancies. However, since there is a lack of data concerning with expression in gastric cancer at the transcriptional level, in this study we evaluated MTDH expression in Iranian cases. Methods: Totally, thirty paired gastric samples were examined by quantitative real-time RT-PCR. Results: Although the mRNA expression was significantly elevated in 46.6% of the examined tumor tissues; its expression was low in others (36.6%). Moreover, there was only a marginal statistical difference between the MTDH gene expression of all tumor specimens compared to their paired non-tumor ones and no statistically significant association with the grades and types of the tumors. Conclusion: Taken together, our results demonstrated that expression of MTDH at the transcriptional level may be increased in gastric cancer tissue samples but with considerable heterogeneity. Due to this, it may have the potential to be used as a target for diagnostic/therapeutic purposes only in a subset of patients.