Browse > Article
http://dx.doi.org/10.11626/KJEB.2019.37.1.072

Modulation of antioxidant defense system in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A  

Yoo, Jewon (Department of Life Science, College of Natural Sciences, Sangmyung University)
Cha, Jooseon (Department of Life Science, College of Natural Sciences, Sangmyung University)
Kim, Hyeri (Department of Life Science, College of Natural Sciences, Sangmyung University)
Pyo, Jinwoo (Department of Life Science, College of Natural Sciences, Sangmyung University)
Lee, Young-Mi (Department of Life Science, College of Natural Sciences, Sangmyung University)
Publication Information
Korean Journal of Environmental Biology / v.37, no.1, 2019 , pp. 72-81 More about this Journal
Abstract
Bisphenol A (BPA), a representative endocrine disrupting chemicals, has adverse effects on growth, development and reproduction in aquatic organisms. The object of this study was to investigate the modulation of antioxidant enzyme-coding genes using quantitative real time RT-PCR (qRT-PCR), enzyme activity and total protein content, to understand oxidative stress responses after exposure to BPA for 48 h in brackish water flea Diaphanosoma celebensis. The BPA ($3mg\;L^{-1}$) significantly upregulated the expression of Cu/Zn-SOD, Mn-SOD, and catalase (CAT) mRNA. Three GST isoforms (GST-kappa, GST-mu, and GST-theta) mRNA levels significantly increased at the rate of $0.12mg\;L^{-1}$ of BPA. In particular, GST-mu showed the highest expression level, indicating its key role in antioxidant response to BPA. SOD activity was induced with a concentration-dependent manner, and total protein contents was reduced. These findings indicate that BPA can induce oxidative stress in this species, and these antioxidants may be involved in cellular protection against BPA exposure. This study will provide a better understanding of molecular mode of action of BPA toxicity in aquatic organisms.
Keywords
antioxidants; bisphenol A; brackish; Diaphanosoma celebensis; water flea;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Valavanidis A, T Vlahogianni, M Dassenakis and M Scoullos. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64:178-189.   DOI
2 Yokota H, H Iwano, M Endo, T Kobayashi, H Inoue, S Ikushiro and A Yuasa. 1999. Glucuronidation of the environmental oestrogen bisphenol A by an isoform of UDP-lucuronosyltransferase, UGT2B1, in the rat liver. Biochem. J. 340:405-409.   DOI
3 Barzilai A and K Yamamoto. 2004. DNA damage responses to oxidative stress. DNA Repair 3:1109-1115.   DOI
4 Bindhumol V, KC Chitra and PP Mathur. 2003. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 188:117-124.   DOI
5 Blanchette B, X Feng and BR Singh. 2007. Marine glutathione S-transferase. Mar. Biotechnol. 5:513-542.   DOI
6 Boutet I, A Tanguy and D Moraga. 2004. Characterization and expression of four mRNA sequences encoding glutathione S-transferases pi, mu, omega and sigma classes in the Pacific oyster Crassostrea gigas exposed to hydrocarbons and pesticides. Mar. Biol. 146:53-64.   DOI
7 Burridge E. 2003. Bisphenol A: product profile. Eur. Chem. News 17:14-20.
8 Chen D, K Kannan, H Tan, Z Zheng, YL Feng, Y Wu and M Widelka. 2016. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity - A review. Environ. Sci. Technol. 50:5438-5453.   DOI
9 Chen MY, M Ike and M Fujita. 2002. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ. Toxicol. 17:80-86.   DOI
10 Contreras-Vergara CA, C Harris-Valle, RR Sotelo-Mundo and G Yepiz-Plascencia. 2004. A mu-class glutathione S-transferase from the marine shrimp Litopenaeus vannamei: molecular cloning and active-site structural modeling. J. Biochem. Mol. Toxicol. 18:245-252.   DOI
11 Hassan ZK, MA Elobeid, P Virk, SA Omer, M ElAmin, MH Daghestani and EM AlOlayan. 2012. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxid. Med. Cell. Longev. 2012:194829.
12 Dutta M and G Paul. 2018. Bisphenol A dose- and time -dependently induces oxidative stress in rat liver mitochondria ex vivo. Asian J. Pharm. Clin. Res. 11:98.   DOI
13 Edori OS, IB Nwoke and ES Edori. 2013. Sublethal effects of diesel on total protein levels and cholesterol in Tympanotonus Fuscatus. J. Appl. Sci. Environ. Manage. 17:21-26.
14 Eid JI, SM Eissa and AA El-Ghor. 2015. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring. J. Basic Appl. Zool. 71:10-19.   DOI
15 Garcia-Espineira MC, LP Tejeda-Benitez and J Olivero-Verbel. 2018. Toxic effects of bisphenol A, propyl paraben, and triclosan on Caenorhabditis elegans. Int. J. Environ. Res. Public Health 15:684.   DOI
16 Geetharathan T and P Josthna. 2016. Effect of BPA on protein, lipid profile and immuno-histo chemical changes in placenta and uterine tissues of albino rat. Int. J. Pharm. Clin. Res. 8:260-268.
17 Hejmej A, M Kotula -Balak and B Bilinsk. 2011. Antiandrogenic and estrogenic compounds: Effect on development and function of male reproductive system. Steroids - Clinical Aspect. doi:10.5772/28538   DOI
18 Hwang GS. 2006. Embryotoxicity of bisphenol A in Daphnia magna. J. Environ. Toxicol. 21:81-86.
19 Inyang IR, ER Daka and EN Ogamba. 2010. Effect of sub-lethal concentrations of diazinon on total protein and transaminase activities in Clarias gariepinus. Curr. Res. J. Biol. Sci. 2:390-395.
20 Izzotti A, S Kanitz, F D'Agostini, A Camoirano and S De Flora. 2009. Formation of adducts by bisphenol A, an endocrine disruptor, in DNA in vitro and in liver and mammary tissue of mice. Mutat. Res. 679:28-32.   DOI
21 Kabuto H, S Hasuike, N Minagawa and T Shishibori. 2003. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ. Res. 93:31-35.   DOI
22 Kang JH, D Aasi and Y Katayama. 2007. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit. Rev. Toxicol. 37:607-625.   DOI
23 Kim BM, S Kang, RO Kim, JH Jung, KW Lee, JS Rhee and YM Lee. 2018. De novo transcriptome assembly of brackish water flea Diaphanosoma celebensis based on short-term cadmium and benzo[a]pyrene exposure experiments. Hereditas 155:36.   DOI
24 Kaya O and B Kaptaner. 2016. Antioxidant defense system parameters in isolated fish hepatocytes exposed to bisphenol A - Effect of vitamin C. Acta Biol. Hung. 67:225-235.   DOI
25 Ke C, X Liu, H Zuo, J Zhao, X Yang and J Yuan. 2013. The oxidative damage of Bisphenol A on the organs of the mice. Health 5:1190-1194.   DOI
26 Khim JS, K Kannan, DL Villeneuve, CH Koh and JP Giesy. 1999. Characterization and distribution of trace organic contaminants in sediment from Masan Bay, Korea. 1. Instrumental analysis. Environ. Sci. Technol. 33:4199-4205.   DOI
27 Kim H, BR Yim, CH Bae and YM Lee. 2017. Acute toxicity and antioxidant responses in the water flea Daphnia magna to xenobiotics (cadmium, lead, mercury, bisphenol A, and 4-nonylphenol). Toxicol. Environ. Health Sci. 9:41-49.   DOI
28 Kitamura S, T Suzuki, S Sanoh, R Kohta, N Jinno, K Sugihara, S Yoshihara, N Fujimoto, H Watanabe and S Ohta. 2005. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol. Sci. 84:249-259.   DOI
29 Kim H, JS Kim, PJ Kim, EJ Won and YM Lee. 2018. Response of antioxidant enzymes to Cd and Pb exposure in water flea Daphnia magna: Differential metal and age-Specific patterns. Comp. Biochem. Physiol. C 209:28-36.
30 Kim RO, H Kim and YM Lee. 2019. Evaluation of 4-nonylphenol and bisphenol A toxicity using multiple molecular biomarkers in the water flea Daphnia magna. Ecotoxicology 28:167-174.   DOI
31 Marcial HS and A Hagiwara. 2007. Multigenerational effects of 17${\beta}$-estradiol and nonylphenol on euryhaline cladoceran Diaphanosoma celebensis. Fish. Sci. 73:324-330.   DOI
32 Lee JS and S Raisuddin. 2008. Modulation of expression of oxidative stress genes of the intertidal copepod Tigriopus japonicus after exposure to environmental chemicals. pp. 95-105. In Interdisciplinary Studies on Environmental Chemistry- Biological Responses to Chemical Pollutants (Murakami et al. eds.). TERRAPUB, Tokyo.
33 Liao C, F Liu, HB Moon, N Yamashita, S Yun and K Kannan. 2012. Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions. Environ. Sci. Technol. 46:11558-11565.   DOI
34 Livak KJ and TD Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method. Methods 25:402-408.   DOI
35 Mandich A, S Bottero, E Benfenati, A Cevasco, C Erratico, S Maggioni, A Massari, F Pedemonte and L Vigano. 2007. In vivo exposure of carp to graded concentrations of bisphenol A. Gen. Comp. Endocrinol. 153:15-24.   DOI
36 Manoj K. 1999. Mercury, copper and cadmium induced changes in the total protein levels in muscle tissue of an edible estuarine fish Boleophthalmus dussumieri (Cuv). J. Environ. Biol. 20:231-234.
37 Miller AF. 2012. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586:585-595.   DOI
38 Mu X, CV Rider, GS Hwang, H Hoy and GA LeBlanc. 2005. Covert signal disruption: anti-ecdysteroidal activity of bisphenol A involves cross talk between signaling pathways. Environ. Toxicol. Chem. 24: 146-152.   DOI
39 Myrnes B and IW Nilsen. 2007. Glutathione S-transferase from the Icelandic scallop (Chlamys islandica): isolation and partial characterization. Comp. Biochem. Physiol. 144C:403-407.
40 Nomura Y, N Mitsui, UK Bhawal, M Sawajiri, O Tooi, T Takahashi and M Okazaki. 2006. Estrogenic activity of phthalate esters by In Vitro VTG assay using primary-cultured Xenopus Hepatocytes. Dent. Mater. J. 25:533-537.   DOI
41 Nunomura A, RJ Castellani, X Zhu, PI Moreira, G Perry and MA Smith. 2006. Involvement of oxidative stress in Alzheimer disease. J. Neuropathol. Exp. Neurol. 65:631-641.   DOI
42 Park JC, MC Lee, DS Yoon, J Han, M Kim, UK Hwang, JH Jung and JS Lee. 2018b. Effects of bisphenol A and its analogs bisphenol F and S on life parameters, antioxidant system, and response of defensome in the marine rotifer Brachionus koreanus. Aquat. Toxicol. 199:21-29.   DOI
43 Oehlmann J, U Schulte-Oehlmann, M Tillmann and B Markert. 2000. Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part I: Bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology 9:383-397.   DOI
44 Oehlmann J, U Schulte -Oehlmann, W Kloas, O Jagnytsch, I Lutz, KO Kusk, L Wollenberger, EM Santos, GC Paull, KJ Van Look and CR Tyler. 2009. A critical analysis of the biological impacts of plasticizers on wildlife. Philos. Trans. R. Soc. B-Biol. Sci. 364:2047-2062.   DOI
45 Park JC, DH Kim, MC Lee, J Han, HJ Kim, A Hagiwara, UK Hwang, HG Park and JS Lee. 2018a. Genome-wide identification of the entire 90 glutathione S-transferase (GST) subfamily genes in four rotifer Brachionus species and transcriptional modulation in response to endocrine disrupting chemicals. Comp. Biochem. Physiol. D 28:183-195.
46 Park JC, MC Lee, DS Yoon, J Han, HG Park, UK Hwang and JS Lee. 2019. Genome-wide identification and expression of the entire 52 glutathione S-transferase (GST) subfamily genes in the $Cu^{2+}$-exposed marine copepods Tigriopus japonicus and Paracyclopina nana. Aquat. Toxicol. 209:56-69.   DOI
47 Rhee JS, S Raisuddin, DS Hwang, T Horiguchi, HS Cho and JS Lee. 2008. A Mu-class glutathione S-transferase (GSTM) from the rock shell Thais clavigera. Comp. Biochem. Physiol. C 148:195-203.
48 Peng YQ, MJ Wang, HG Chen, JH Chen, H Gao and HH Huang. 2018. Immunological responses in haemolymph and histologic changes in the hepatopancreas of Charybdis japonica (A. Milne-Edwards, 1861) (Decapoda: Brachyura: Portunidae) exposed to bisphenol A. J. Crust. Biol. 38:489-496.   DOI
49 Pinto S, VN Sato, EA De-Souza, RC Ferraz, H Camara, APF Pinca, DR Mazzotti, MT Lovci, G Tonon, CM Lopes-Ramos, RB Parmigiani, M Wurtele, KB Massirer and MA Mori. 2018. Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis. Redox Biol. 18:84-92.   DOI
50 Regoli F, GB Principato, E Bertoli, M Nigro and E Orlando. 1997. Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, a sentinel organism for monitoring the Antarctic environment. Polar Biol. 17:251-258.   DOI
51 Sajiki J and J Yonekubo. 2003. Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere 51:55-62.   DOI
52 Squier TC. 2001. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 36:1539-1550.   DOI
53 Staples CA, PB Dome, GM Klecka, ST Oblock and LR Harris. 1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149-2173.   DOI
54 Strange RC, MA Spiteri, S Ramachandran and AA Fryer. 2001. Glutathione S-transferase family of enzymes. Mutat. Res. 482:21-26.   DOI
55 Tan L, S Wang, Y Wang, M He and D Liu. 2015. Bisphenol A exposure accelerated the aging process in the nematode Caenorhabditis elegans. Toxicol. Lett. 235:75-83.   DOI
56 Barbosa IA, RM Martins, ML Sa e Melo and AMVM Soares. 2003. Acute and chronic toxicity of dimethyl sulfoxide to Daphnia magna. Bull. Environ. Contam. Toxicol. 70:1264-1268.   DOI
57 Alexander HC, DC Dill, LW Smith, PD Guiney and P Dorn. 1988. Bisphenol A: Acute aquatic toxicity. Environ. Toxicol. Chem. 7:19-26.   DOI
58 Atkinson A and D Roy. 1995. In vitro conversion of environmental estrogenic chemical bisphenol -A to DNA binding metabolites. Biochem. Biophys. Res. Commun. 210:424-433.   DOI
59 Bae C, RO Kim, JS Kim and YM Lee. 2018. Acute toxicity and modulation of an antioxidant defence system in the brackish water flea Diaphanosoma celebensis exposed to cadmium and copper. Toxicol. Environ. Health Sci. 10:186-193.   DOI