• 제목/요약/키워드: Quantitative Polymerase Chain Reaction

검색결과 678건 처리시간 0.023초

Quantitative Analysis of Two Genetically Modified Maize Lines by Real-Time PCR

  • Lee Seong-Hun;Kang Sang-Ho;Park Yong-Hwan;Min Dong-Myung;Kim Young-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.205-211
    • /
    • 2006
  • A quantitative analytical method to detect new lines of genetically modified (GM) maize, NK603 and TC1507, has been developed by using a real-time polymerase chain reaction (PCR). To detect these GM lines, two specific primer pairs and probes were designed. A plasmid as a reference molecule was constructed from an endogenous DNA sequence of maize, a universal sequence of a cauliflower mosaic virus (CaMV) 35S promoter used in most GMOs, and each DNA sequence specific to the NK603 and TC1507 lines. For the validation of this method, the test samples of 0, 0.1, 0.5, 1.0, 3.0, 5.0, and 10.0% each of the NK603 and TC1507 GM maize were quantitated. At the 3.0% level, the biases (mean vs. true value) for the NK603 and TC1507 lines were 3.3% and 15.7%, respectively, and their relative standard deviations were 7.2% and 5.5%, respectively. These results indicate that the PCR method developed in this study can be used to quantitatively detect the NK603 and TC1507 lines of GM maize.

Comparison of Methods for Detecting and Quantifying Variation in Copy Numbers of Duplicated Genes

  • Jeon, Jin-Tae;Ahn, Sung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제16권6호
    • /
    • pp.1037-1046
    • /
    • 2009
  • Copy number variations(CNVs) are known as one of the most important factors in susceptibility to genetic disorders because they affect expression levels of genes. In previous studies, pyrosequencing, mini-sequencing real-time polymerase chain reaction(PCR), invader assays and other techniques have been used to detect CNVs. However, the higher the copy number in a genome, the more difficult it is to resolve the copies, so a more accurate method for measuring CNVs and assigning genotype is needed. PCR followed by a quantitative oligonucleotide ligation assay(qOLA) was developed for quantifying CNVs. The aim of this study was to compare the two methods for detecting and quantifying the CNVs of duplicated gene: the published pyrosequencing assay(pyro_CNV) and the newly developed qOLA_CNV. The accuracy and precision of the assay were evaluated for porcine KIT, which was selected as a model locus. Overall, the root mean squares(RMSs) of bias and standard deviation of qOLA_CNV were 2.09 and 0.45, respectively. These values are less than half of those of pyro CNV.

A Novel Marker for the Species-Specific Detection and Quantitation of Vibrio cholerae by Targeting an Outer Membrane Lipoprotein lolB Gene

  • Cho, Min Seok;Ahn, Tae-Young;Joh, Kiseong;Paik, Soon-Young;Kwon, Oh-Sang;Jheong, Won-Hwa;Joung, Yochan;Park, Dong Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권4호
    • /
    • pp.555-559
    • /
    • 2013
  • Vibrio cholerae O1 and O139 are the major serotypes associated with illness, and some V. cholera non-O1 and non-O139 isolates produce cholera toxin. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the species-specific detection and quantitation of V. cholera using a primer pair based on an outer membrane lipoprotein lolB gene for the amplification of a 195 bp DNA fragment. The qPCR primer set for the accurate diagnosis of V. cholera was developed from publically available genome sequences. This quantitative PCR-based method will potentially simplify and facilitate the diagnosis of this pathogen and guide disease management.

Analysis of Hepatitis C Virus Genotypes and RNA Quantitative Values in Cheonan, Korea from 2007 to 2016

  • Bishguurmaa Renchindorj;Bo Kyeung Jung;Joowon Park
    • 한국미생물·생명공학회지
    • /
    • 제50권3호
    • /
    • pp.422-429
    • /
    • 2022
  • The hepatitis C virus (HCV) genome contains a positive-sense single-stranded RNA molecule, and it is classified into 8 genotypes and 87 subtypes. Globally, over 350,000 people die from liver cirrhosis and hepatocellular carcinoma caused by HCV each year. Here, the genotype distribution of HCV was estimated in the population in Cheonan, Korea using Sanger sequencing. In addition, the correlation between HCV RNA level and genotype was assessed using real-time polymerase chain reaction (PCR); similarly, the correlation of HCV RNA level with isolation year (2007-2016) was determined using 463 consecutive serum samples obtained from patients at Dankook University Hospital, Cheonan, Korea. In 2007, genotype 1b (54.2%) was predominant, followed by genotypes 2a (41.7%), 1a (2.1%) and 3a (2.1%); whereas in 2016, the predominant genotype was 2a (49.0%), followed by genotypes 1b (46.9%), 3b (2%), and 4a (2%). Neither age nor sex was correlated with HCV genotype. Furthermore, the mean HCV RNA level decreased significantly from 2012 to 2016 (p < 0.05). However, no significant correlations between genotype and HCV RNA level were found. Overall, the findings revealed that genotypes 2a and 1b were the most common in Cheonan, and the prevalence of HCV genotype 1b tended to decrease over the past decade.

Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR

  • Truong, A-Tai;Sevin, Sedat;Kim, Seonmi;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoungsu
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.40.1-40.12
    • /
    • 2021
  • Background: The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. Objectives: The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. Methods: A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. Results: UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 104 spores/bee, and the stable detection level was ≥ 2.40 × 105 spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 104 copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. Conclusions: UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.

Quantitation of Hepatitis C Viral RNA Using Direct CRT-PCR

  • Park, Young-Suk;Lee, Kyung-Ok;Oh, Moon-Ju;Chai, Young-Gyu
    • BMB Reports
    • /
    • 제30권3호
    • /
    • pp.234-236
    • /
    • 1997
  • Chronic hepatitis C virus (HCV) infection is associated with the rapid development of cirrhosis and hepatocellular carcinoma. It has been reported that the amount of HCV RNA may be correlated with the progression of hepatitis and may be a prognostic marker for treatment of HCV patients. The direct detection of HCV RNA by reverse transcription-polymerase chain reaction (RT-PCR) is widely used to determine the presence of circulating virions. The most relevant limit of this approach is the lack of quantitative information about the viral titer. In the present study, we developed the method for HCV quantitation using competitive reverse transcription (CRT)-PCR using the deleted HCV standard. The serially diluted standard was added in titrated amounts to the target HCV RNA. The mixture was then reverse transcribed and amplified in the same reaction tube. The methods were evaluated using over 110 HCV-PCR positive samples in Koreans. About 59% of the samples were judged to contain $10^{5}-10^{6}$ copies of HCV RNA in 1 ml of serum.

  • PDF

Multiplex Real-Time PCR을 이용하여 6종의 주요 잇몸질환 유발 미생물을 동시에 검출하는 기법 (Multiplex Real-Time PCR for Simultaneous Detection of 6 Periodontopathic Bacteria)

  • 조홍범
    • 미생물학회지
    • /
    • 제49권3호
    • /
    • pp.292-296
    • /
    • 2013
  • 본 연구는 multiplex real-time PCR을 이용하여 Actinobacillus actinomycetemcomitans, Campylobacter rectus, Porphyromonas gingivalis, Tannerella forsythus, Treponema denticola, Prevotella intermedia 등과 같은 6종의 주요 치주 질환 원인 미생물들을 동시에 검출할 수 있는 분석 방법에 관한 것이다. 4개의 형광 염료를 사용하여 internal control과 함께 3개의 균종씩 나누어 분석하였으며, 분석 대상 균종 간 그리고 다른 종류의 구강 미생물 균종과의 간섭과 교차 반응이 없음을 확인하였다. 본 연구의 multiplex real-time PCR은 타액과 플라그 등의 다양한 샘플에 포함되어 있는 각 미생물들을 정성, 정량적으로 분석할 수 있었으며, 치주염 환자와 건강한 사람들에 대한 비교 분석 결과 분명한 차이를 발견 할 수 있었다.

익산 왕궁지역 논 토양에서의 질산화 세균과 질산화 고세균의 미생물학적 작용 (Microbial Activity of Ammonia Oxidizing Bacteria and Ammonia Oxidizing Archaea in the Rice Paddy Soil in Wang-gung Area of Iksan, Korea)

  • 김현수
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권4호
    • /
    • pp.50-59
    • /
    • 2016
  • Spatial and temporal changes in nitrification activities and distribution of microbial population of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in paddy soils were investigated. Soil samples were collected in March and October 2015 from rice paddy with and without the presence of confined animal feeding operations. Incubation experiments and quantitative polymerase chain reaction showed that AOA's contribution to nitrification kinetics was much higher in locations where organic nitrogen in animal waste is expected to significantly contribute to overall nitrogen budget, and temporal variations in nitrification kinetics were much smaller for AOA than AOB. These differences were interpreted to indicate that different microbial responses of two microbial populations to the types and concentrations of nitrogen substrates were the main determining factors of nitrification processes in the paddy soils. The copy numbers of ammonium monooxygenase gene showed that AOA colonized the paddy soils in higher numbers than AOB with stable distribution while AOB showed variation especially in March. Although small in numbers, AOB population turned out to exert more influence on nitrification potential than AOA, which was attributed to higher fluctuation in AOB cell numbers and nitrification reaction rate per cells.

Comprehensive Evaluation of the Anti-Helicobacter pylori Activity of Scutellariae Radix

  • Lee, Ba Wool;Park, Il-Ho;Yim, Dongsool;Choi, Sung Sook
    • Natural Product Sciences
    • /
    • 제23권1호
    • /
    • pp.46-52
    • /
    • 2017
  • The aim of this study was to evaluate the anti-Helicobacter pylori activity of fractions and major aglycon compounds (baicalein, chrysin, oroxylin A, wogonin) of Scutellariae Radix. Minimum inhibitory concentration (MIC) measurement, DPPH radical-scavenging assay, DNA protection assay, and urease inhibition analysis were performed. The ethyl acetate (EtOAc) fraction showed the potent anti-Helicobacter activity, and therefore, compounds in the EtOAc fraction were subjected to further assay. The MICs of chrysin, oroxylin A, and wogonin against Helicobacter pylori 26695 were 6.25, 12.5 and $25{\mu}g/mL$, respectively. Baicalein exhibited the most effective DPPH radical-scavenging activity. DNA protection using Fenton reaction, chrysin, oroxylin A, and wogonin showed effective DNA protective effect. This result was also confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Regarding Jack bean urease (0.5 mg/mL, 50 unit/mg) inhibition, 20 mM ofbaicalein and chrysin inhibited urease activity by 88.2% and 72.5%, respectively.

Associations of alcohol consumption and alcohol flush reaction with leukocyte telomere length in Korean adults

  • Wang, Hyewon;Kim, Hyungjo;Baik, Inkyung
    • Nutrition Research and Practice
    • /
    • 제11권4호
    • /
    • pp.334-339
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Telomere length is a useful biomarker for determining general aging status. Some studies have reported an association between alcohol consumption and telomere length in a general population; however, it is unclear whether the alcohol flush reaction, which is an alcohol-related trait predominantly due to acetaldehyde dehydrogenase deficiency, is associated with telomere length. This cross-sectional study aimed to evaluate the associations of alcohol consumption and alcohol flush reaction with leukocyte telomere length (LTL). SUBJECTS/METHODS: The study included 1,803 Korean adults. Participants provided blood specimens for LTL measurement assay and reported their alcohol drinking status and the presence of an alcohol flush reaction via a questionnaire-based interview. Relative LTL was determined by using a quantitative polymerase chain reaction. Statistical analysis used multiple linear regression models stratified by sex and age groups, and potential confounding factors were considered. RESULTS: Age-specific analyses showed that heavy alcohol consumption (> 30 g/day) was strongly associated with a reduced LTL in participants aged ${\geq}65years$ (P < 0.001) but not in younger participants. Similarly, the alcohol flush reaction was associated with a reduced LTL only in older participants who consumed > 15 g/day of alcohol (P < 0.01). No significant alcohol consumption or alcohol flush reaction associations with LTL were observed in the sex-specific analyses. CONCLUSIONS: The results suggest that older alcohol drinkers, particularly those with the alcohol flush reaction, may have an accelerated aging process.