• Title/Summary/Keyword: Quadrotor system

Search Result 45, Processing Time 0.021 seconds

Design of an Autonomous Hover Control System for a Small Quadrotor

  • Raharja, Gilar B.;Kim, Gyu-Beom;Yoon, K.J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.338-344
    • /
    • 2010
  • This paper discusses the development of the control system of a mini quadrotor in Konkuk University for indoor applications. The attitude control system consists of a stability augmentation system, which acts as the inner loop control, and a modern control approach based on modeling will be implemented as the outer loop. The inner loop control was experimentally satisfied by a proportional-derivative controller; this was used to support the flight test in order to validate the modeling. This paper introduces the mathematical model for the simulation and design of the optimal control on the outer loop control. To perform the experimental tests, basic electronic hardware was developed using simple configurations; a microcontroller used as the embedded controller, a low-cost 100 Hz inertial sensors used for the inertial sensing, infra-red sensors were employed for horizontal ranging, an ultrasonic sensor was used for ground ranging and a high performance propeller system built on an quadrotor airframe was also employed. The results acquired from this compilation of hardware produced an automatic hovering ability of the system with ground control system support for the monitoring and fail-safe system.

Attitude and Hovering Control of Quadrotor Systems using Pole Placement Method (극 배치 기법을 활용한 쿼드로터 시스템의 자세 및 호버링 제어)

  • Park, Ji-Sun;Oh, Sang-Young;Choi, Ho-Lim
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.106-119
    • /
    • 2020
  • In this paper, we propose a control scheme for quadrotor system using a pole placement method. When using a state feedback controller, a lot of trial and error in selection of control gains are often required to improve system performance. In order to relax this complicated process, we analyze the closed-loop system associated with control gains. Then, we present a control gain selection algorithm for control gains using a pole placement method to improve the system performance. The proposed control method is applied to the actual quadrotor system to illustrate the validity of the proposed method.

Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System (다종 센서 융합의 신뢰성 향상을 통한 쿼드로터 자세 제어)

  • Yu, Dong Hyeon;Park, Jong Ho;Ryu, Ji Hyoung;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.517-526
    • /
    • 2015
  • This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications. We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

Analysis on Dynamic Characteristics and LQR Control of a Quadrotor Aircraft with Cyclic Pitch (사이클릭 피치제어가 가능한 쿼드로터 항공기의 운동특성 분석과 LQR 제어)

  • Jo, Sungbeom;Jang, Se-Ah;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • Typical quadrotor aircraft use four differential thrust vectors to control the motion. In this study, we design a quadrotor aircraft using collective and cyclic control to improve the shortcomings of existing quadrotor aircraft. The quadrotor aircraft with cyclic control can fly at various attitudes due to the excessive control degrees of freedom. Hence the quadrotor aircraft with cyclic control is suitable as high performance aircraft. In this study, modeling and stability analysis of the quadrotor aircraft have been performed using FLIGHTLAB. LQR control systems were designed using linear models at various flight conditions and verified through nonlinear simulations using MATLAB.

Vision-Based Trajectory Tracking Control System for a Quadrotor-Type UAV in Indoor Environment (실내 환경에서의 쿼드로터형 무인 비행체를 위한 비전 기반의 궤적 추종 제어 시스템)

  • Shi, Hyoseok;Park, Hyun;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.47-59
    • /
    • 2014
  • This paper deals with a vision-based trajectory tracking control system for a quadrotor-type UAV for entertainment purpose in indoor environment. In contrast to outdoor flights that emphasize the autonomy to complete special missions such as aerial photographs and reconnaissance, indoor flights for entertainment require trajectory following and hovering skills especially in precision and stability of performance. This paper proposes a trajectory tracking control system consisting of a motion generation module, a pose estimation module, and a trajectory tracking module. The motion generation module generates a sequence of motions that are specified by 3-D locations at each sampling time. In the pose estimation module, 3-D position and orientation information of a quadrotor is estimated by recognizing a circular ring pattern installed on the vehicle. The trajectory tracking module controls the 3-D position of a quadrotor in real time using the information from the motion generation module and pose estimation module. The proposed system is tested through several experiments in view of one-point, multi-points, and trajectory tracking control.

A Posture Based Control Interface for Quadrotor Aerial Video System Using Head-Mounted Display (HMD를 이용한 사용자 자세 기반 항공 촬영용 쿼드로터 시스템 제어 인터페이스 개발)

  • Kim, Jaeseung;Jeong, Jong Min;Kim, Han Sol;Hwang, Nam Eung;Choi, Yoon Ho;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1056-1063
    • /
    • 2015
  • In this paper, we develop an interface for aerial photograph platform which consists of a quadrotor and a gimbal using the human body and the head posture. As quadrotors have been widely adopted in many industries such as aerial photography, remote surveillance, and maintenance of infrastructures, the demand of aerial video and photograph has been increasing remarkably. Stick type remote controllers are widely used to control a quadrotor, but this method is not an intuitive way of controlling the aerial vehicle and the camera simultaneously. Therefore, a new interface which controls the serial photograph platform is presented. The presented interface uses the human head movement measured by head-mounted display as a reference for controlling the camera angle, and the human body posture measured from Kinect for controlling the attitude of the quadrotor. As the image captured by the camera is displayed on the head-mounted display simultaneously, the user can feel flying experience and intuitively control the quadrotor and the camera. Finally, the performance of the developed system shown to verify the effectiveness and superiority of the presented interface.

Depth Estimation for Image-based Visual Servoing of an Under-actuated System (Under-actuated 시스템에서의 이미지 서보잉을 위한 깊이 추정 기법)

  • Lee, Dae-Won;Kim, Jin-Ho;Kim, H.-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • A simple and accurate depth estimation algorithm for an IBVS (Image-Based Visual Servoing) is presented. Specifically, this algorithm is useful for under-actuated systems such as visual-guided quadrotor UAVs (Unmanned Aerial Vehicles). Since the image of a marker changes with changing pitch and roll angles of quadrotor, it is difficult to estimate depth. The proposed algorithm compensates a shape of the marker, so that the system acquire more accurate depth information without complicated processes. Also, the roll and pitch channels are decoupled so that the IBVS algorithm can be used in an under-actuated quadrotor system.

System Modeling and Waypoint Guidance Law Designing for 6-DOF Quadrotor Unmanned Aerial Vehicle (6-자유도 쿼드로터 무인항공기의 모델링 및 유도기법 설계)

  • Lee, Sanghyun;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • As avionics and mechanical devices have been developed, the size of unmanned aerial vehicle (UAV) is getting smaller. However, the complicated and accurate missions are provided to the UAV. Among various types of UAVs, quadrotors are widely used for their availability by virtue of simple structure and hovering function. However, the control of quadrotor is highly constrained, because the quadrotor is an under-actuated system which has only 4 actuator inputs. To deal with this under-actuated problem, a new quadrotor model with two more actuators in addition to the 4 propeller inputs is provided to make the system fully-actuated. For the proposed model, a controller is designed using feedback linearization methods. To validate the model and to verify the performance of the proposed controller, numerical simulation is performed.

Non-linear Adaptive Attitude Controller Design of Quadrotor UAV (쿼드로터 무인기 비선형 적응 자세제어기 설계)

  • Choi, In-Ho;Park, Mu-Hyuk;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2421-2427
    • /
    • 2012
  • This paper is discussed the design on non-linear adaptive attitude controller for quadrotor UAV. Quadrotor UAV featured to have four rotor, required the special controller to compensate for the model parameter uncertainties as the unstable nonlinear system. In this research, we designed the adaptive controller to compensate for the payload changes even though it is changed with industrial applications. Especially, based on the mathematical model of UAV, non-linear adaptive controller is suggested and the stability is verified using the Lyapunov function and finally proved its performance and effectiveness of update laws with various payload by simulation.

System Identification of Quadrotor IT Convergence UAV using Batch and RLS Estimation Methods (배치추정기법과 RLS추정기법을 사용한 쿼드로터 IT융합 무인항공기 시스템식별)

  • Jung, Sunghun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • UAVs began to be actively applied to so-called 3D jobs, including the autonomous exploration, investigation, mapping, search and rescue, etc. since the mid-2000s. With this global trend, having a precise controllability of the UAV will certainly revolutionize the life of the modern human in the aspect of tremendous applications of the UAV. In the first part, a simplified dynamic model of the UAV identified using system identification techniques is compared with the previously built time-discrete linear model. In the second part, the three parameters of the dynamic model are estimated using the batch and RLS methods. Angular acceleration data of the quadrotor UAV at the hovering maneuver are analyzed and shown to be converging at all time. Also, according to the quadrotor flight data from both experiments and MATLAB simulations, the batch estimation method turns out to be more accurate than the RLS estimation method based on the comparison of final parameter values.