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UAVs began to be actively applied to so-called 3D jobs, including the autonomous
exploration, investigation, mapping, search and rescue, etc. since the mid-2000s. With this global trend,
having a precise controllability of the UAV will certainly revolutionize the life of the modern human in the
aspect of tremendous applications of the UAV. In the first part, a simplified dynamic model of the UAV
identified using system identification techniques is compared with the previously built time-discrete linear
model. In the second part, the three parameters of the dynamic model are estimated using the batch and
RLS methods. Angular acceleration data of the quadrotor UAV at the hovering maneuver are analyzed and
shown to be converging at all time. Also, according to the quadrotor flight data from both experiments
and MATLAB simulations, the batch estimation method turns out to be more accurate than the RLS

estimation method based on the comparison of final parameter values.
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1. Introduction

Flying objects, such as the unmanned aerial vehicles
(UAV), are getting to be a necessary item which a
nation, a company, and a person should possess to
utilize in various fields [1].

The UAVs, or also called as drones, are attracting
attention as one of the major industries that will be
popular in the near future. The UAVs, which have
limitless application areas, are considered as one of the
leading players in the fourth industrial revolution, that
is, in the era of physical, digital, and biological
technology convergence [2,34].

New light on the value of the UAV has acted as a
catalyst to further highlight the importance of the
UAV. In fact, not only the UAVs, but also other
unmanned systems are actively being researched to
prepare the fourth industrial revolution [5,6].

With  this
controllability of the UAV will certainly revolutionize

global trend, having a precise
the life of the modern human in the aspect of
tremendous applications of the UAV.

Throughout the paper, a quadrotor UAV dynamic
model will be simplified and verified using two
methods, including batch and recursive least squares
(RLS) methods for the system identification [7,89].

The flow of this paper is as follows. Section 2
explains the UAV governing model and Section 3
describes the setup for the data acquisition. Section 4
illustrates parameter estimation and Section 5 shows
the convergence of estimates. From Section 6 to
Section 8, we show the conditional status of an
mverted matrix using singular value and the signal to
(SNR), the
identification using the noise probability density
function (PDF), and real-time and closed loop state and

parameter estimation. Lastly, Section 9 contains the

noise ratio robustness of system

conclusion of this paper.

2. UAV Governing Model

The same governing models of quadrotor UAV
shown in [10] are used in this paper. Dynamic models
of a quadrotor UAV are very well known and most
quadrotor models are appearing to be very similar. A
minor difference is to use the z-axis as going upward
or downward.

When a path waypoint is applied to the system as an
input, the quadrotor dynamic model computes required

motor PWM and results in angular accelerations of the

roll (&5), pitch (é), and yaw (1'/}). The system
eventually results in a next position waypoint ([Fig. 1]).

e Motor PWM Quadropter 86,5 Dat;

Input Input Model output Output

Chaser-Prey Dynamic Model

[Fig. 1] Diagram of quadrotor UAV model

The quadrotor dynamic model derived in [5] is,
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in which the system inputs, U;, Us, Us, and &, can be

rewritten as

Uy =H2 - 1), @
)

U, =d(@+ % — % - 2),
0=0,+0,- 02,2,

where R is the rotation matrix, ¢ is the roll angle, O1is
the pitch angle, w is the yaw angle, & is the ith rotor
speed, I,,- is the body inertia along x, y, and z-axis,
J is the propeller inertia, b is the thrust factor, d is the
drag factor, and / is the propeller length.

Though the

gyroscopic effects, and propeller rotations, the influence

Eq. 1 contains actuator actions,

of actuator actions is the only important effects among
three influences. So, the Eq. 1 can be simplified as,
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By substituting the Eq. 2 into the Eq. 3, we can finally

achieve

- b
o= (2= %), @
i= (03— 2),

Y
= (op -0 - )

3. Setup for the Data Acquisition

In this paper, the main control objective is to make
a quadrotor UAV (ARDrone [11]) hovers at one
position without tilting in any other direction. There is
a built-in function for the hovering manipulation of the
AR.Drone UAV, but the hovering function does not
properly work according to experiments. To achieve
hovering behavior, PID controllers for roll, pitch, and
yaw angles are designed with controller coefficients of

K,=1, K; =1, and K, =1. It is implemented in code as

shown in [Fig. 2].

1 // PID control - horizontal positioning of ...
ARDrone
// Pitch control
s pre_errorl = setpointl - pitch;
4 errorl = setpointl - pitch;
5 integrall = integrall + (errorlstimeStep);
6 derivativel = (errorl - pre_errorl)/timeStep;
7 outputl = int (" (Kpxerrorl) + ...
(Kixintegrall) +
B (Kdxderivativel)");
9 if (outputl < -10) {
10 outputl = -10;
1 }
12 else if (outputl > 10) {
13 outputl = 10;
}

15 if (outputl > 0) {

1 ardrone. forward (outputl) ;
17 }

1 else if (outputl < 0) {

1 ardrone.backward (outputl) ;

20 }
2 pre_errorl = errorl;

[Fig. 2] PID controller for pitch angle of UAV

Using PID controllers, data were collected for 15 s
and total hundred data sets were collected. The

timestep of the Wifi signal which UAV uses is 0.05 s.
Overall experiment setup is shown in [Fig. 3(a)]l.

S

(a) Data gathering system set up
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(b) GUI for UAV behavior monitoring

[Fig. 3] Experiment set up

Also, for effective experiments, the GUI shown in
[Fig. 3(b)] is developed using Processing open source
computer programming language [12] to monitor and
save the data of the real time video (from front camera
of the UAV), pitch angle, roll angle, yaw angle, and
altitude.

The UAV flight is also simulated using the
MATLAB/Simulink toolbox developed by [13]. To
obtain the desired UAV data, the Simulink model is
modified as shown in [Fig. 4]. The modified parts are:

1. Error is introduced to Xy data acquisition with 0

mean and 0.01 variance,

2. Error is introduced to z data acquisition with O

mean and 5 variance,

3. The z data is set to be sinusoidal with an

amplitude of 2, the frequency of 2 « 7 « 0125
rad/sec, and phase of —x/2 rad. The visual

simulation is shown in [Fig. 5].
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[Fig. 4] UAV Simulink model
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[Fig. 5] The graphic output of the UAV Simulink model
shown in [Fig, 4]

4, Parameter Estimation

In this section, parameter estimation using RLS
method is performed. According to the RLS parameter
estimation method for the linear static process [14], we

can set
e(k) =Y, (k) 7Kuu(k) 5)

where e is the error, y, is the observation, Ky is the
model parameter, u is the system input, Kyu is the
model prediction, and k is the given step time.

For the RLS method, the cost function defined as,

V=3¢ W= 3 [5,®

k=1

K u k)]Q, (6)

has to be minimized to obtain the parameter Ky where
N is the total number of data sets. To find the

minimum, one first determines the first derivative with

regard to Ky as,

V= d = 22 ly, (k) = Ky (k) Ju(k) =0, (7)
so that, the optimal choice of Ky or f( becomes

N
Dy, (Rulk)
A=t ®)

where K is the estimate of K.
By applying the Eq. 8 to the Eq. 4, we can get

o= — (07— 13), ©)

Then, the Eq. 6 becomes

Vo = S oz -]

Nz L
Vo = =305 2oz - 20|
N0 Nkzl [1/ 3 1 ’
1 & d; ) 2
Vi = 2010 7 [250) + 2 (1) - 2 (k) - (W)
k=1 z
(10
where Vi, Vy4, and V,,, are cost functions of roll,

pitch, and yaw angles.
Finally, the Eq. 8 becomes

. -
(T): N , an
PN EACRCAT)
ﬁ] [23(k) — 62 ()] 6(k)
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The result of the estimated parameter values is
shown in <Table 1>.

(Table 1) Comparison of original values with estimated

values
Parameter Estimated Parameter Original Parameter
b 0.3068E-4 0.5084E-4
0 04795E-4 0508454
¢ 0.0018E-4 0279E-4

5. Convergence of Estimates

In this section, we check if the distribution of
parameter estimates converge to a normal distribution
using a histogram technique and find asymptotic
covariances, that is, the covariance matrices from data.

First of all, the type of distribution is checked by

referring [15] as,

71\, X\) Ut,0)e(t,67) € N0, Q) (12)

k=1
with

Q= limN -+ Elvy,(0"2Y)[vy, (0".2")]", (13)

N—>co

@ = limw - E[ V\'.e’(9*~z‘\v)}[V\w’(Q*-Z‘V)] T

N-—>o00

Q.= i+ 5v, 029V, le". 2",
N-—o0

where ¥(t,¢") is the (d/d¢")y(tle’), € is the prediction
@Q,, and Q, are

covariance matrices of the roll, pitch, and yaw angles,

error, © is the parameter vector, @,
E is the expected value, * represents an asymptotic
value, and Z" is the batch of data from the system.
The Eq. 12 means that the random variable on the left
converges with the normal distribution with zero mean

and covariance matrix Q.

In the Eq. 13, with the assumption that V", V',
and V,, are independent, it can be stated as
VN(©,—6) € N0.Ry) (14)

with

=) "elvier] (15)

where the covariance matrix @ is given in the Eq. 13.
In conclusion, the obtained results are shown in [Fig. 6].
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[Fig. 6] Normal distributions of three angular accelerations

Covariance matrices of the asymptotic distribution in
the Eq. 15 can be approximated as,
1

u(6,)~ P (16)
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In some special cases when data and noises are
sequences of independent random variables with zero
value and variance . In this case, the matrix P in Eq.

15 can be rewritten as,

1

P(—) = All [Ew(t7@())WT(t7@l]) ] B : (17)

Having processed N data points and determined ©,,
the Eq. 17 can be rewritten as,

>/>

AV

[ﬁigp( éy)gpf(né‘v)]ﬂ (18)
— L 3l6y)

== \

Convergence of the parameters is checked by changing
the number of the total experiment from 1 to 100
measurements as shown in [Fig. 7]. Here, each
parameter tends to be constant as the number of
measurements increase. This illustrates all parameters

converge well.

ddpsi_est

0 10 20 30 40 50 B0 70 2] a0 100
n (# of measurement)

(a) Convergence of &

ddtheta_est

0 10 20 30 40 & 60 70 & 90 100
n (# of measurement)

(b) Convergence of 0

dlphi_est

0 0 20 30 40 & B0 70 80 90 100
n (# of measurement)

(c) Convergence of (/)

[Fig. 7] Convergence of three angular accelerations

6. Conditional Status of Inverted
Matrix using Singular Value
and SNR

It is required to check if we have a well-conditioned
matrix inversion, ideally all singular values in the same
order of magnitude, in the system identification
procedure. Also, we need to relate the condition number
to the SNR of the data to check whether the
persistency of excitation condition has been met.

To check whether a system is well-conditioned or
ill-conditioned, we need to calculate a condition number

of R(N) as,
A= QR=10,Y] (19)

where the matrix R comes from

R(N)=0T6=

i
. (20)
0

In the Eq. 19, the big matrix ¢ does not need to be
calculated since all information is contained in the small
matrix &, [15]. Also, considerable computations can be
saved by using a built-in function in MATLAB,
R=triu(qgr(A4)), to compute the matrix A if the matrix

A has many more rows than columns ([Fig. 8)).
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1 >> A = triu(gr([phi_list,Y list]));

2 >> A = A(l:4,1:4);

3 >> [U,S,V] = svd(R);

4 >> 8

5

6 S =

8 1.0e+007 =

9

10 2.9945 0 0 0
1 0 0.6334 0 0
12 0 0 0.0581 0
3 0 0 0 0.0092

[Fig. 8] Application of the MATLAB built—in function,
R=triu(gr(A)), to the parameter ¥

In [Fig. 8], the function svd represents the singular
value decomposition [16]. Since the matrix S has an
almost same order of magnitude, it is a fairly
well-conditioned matrix.

The SNR can be defined as the reciprocal of the
coefficient of variation, ie. ratio of the mean to

standard deviation of a signal or measurement [17,18],

iyl
SNR= "+ @1
where 4 is the signal mean or expected value and o is
the standard deviation of the noise or an estimate
thereof. Calculated singular values and SNRs are
shown in <Table 2>.

(Table 2) Calculated singular values and SNRs

Parameter Singular Value SNR
é 2.3005, 0.1065 -0.0849
23228, 0.1192 0.0087

b 32154, 05910, 0.1522, 0.0446 00315

Persistency of the excitation condition is met in all
three cases. The ¢ is particularly the most stable

among the three parameters against input noise.

7. Robustness of System
Identification using Noise PDF

The robustness of identification procedures to
outliers and the optimality criterion producing the
minimum parameter variance are dependent upon the
PDF since normal noise implies that the quadratic

criteria are the best.

The mean square error is defined as

0= 5 =3 B[ Flepw - ).
W= 5 =3 35 =P a9 - )

N 2
1,(e= éef, = %k;(u— l]—é(ﬂf(k) + 02 (k) — 2 (k) — 2 (k)))

(22)

and PDFs of three parameters are shown in [Fig. 9]
and <Table 3>.

(a) Noise PDF of ¢

1 15

(b) Noise PDF of 8

(c) Noise PDF of 1)

[Fig. 9] Noise PDF of three angular accelerations
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(Table 3) Comparison of original values with estimated
values in noise PDF

Parameter Estimated Value Original Value
& 0.3993E-4 0.5084E-4
0 0.5818E-4 0.5084E-4
" 0.0019E-4 0.2798E-4

8. Real—time and Closed Loop State
and Parameter Estimation

The recursive system parameter estimation is
performed to determine if estimates are consistent with
parameters previously obtained using the batch
estimation method.

There are multiple methods to calculate recursive
parameters including RLS, recursive instrumental
variable (RIV), recursive prediction error (RPE),
recursive pseudolinear regressions (RPLR), etc. When
the time-varying linear system is investigated, the RLS
method can be used by considering the effect from the
time-varying system.

By introducing the white Gaussian noise, w, we can

achieve

Ot +1)=0O(t)+ult), (23)
Fulth (0= A, ().

Bo(t)v"(t)= R, (¢).

Then, the Kalman filter (KF) interpretation gives

O(t)=6(t —1)+ It) [y(t) - 2t)e"(t—1)], (24)
I t) P(tfl)q)(t)
R)+o"(t)Pt—1)a(t)’
oy A= De()e () At —1)
A= R e T At — 1)

+ R (t).

The Eq. 23 and Eq. 24 are implemented in MATLAB
as shown in [Fig. 10] and convergence of the

parameters is shown in [Fig. 11].

zero
s lamda =
6 lamda = 1;
7 ddpsi_est = zeros(400,1);
s for 1=1:400

phi = data{l}(i,5)"2 + data{l}(i, 3)"2 - ..
{1}(i,4)"2 - data{l}(i,2)"2;
ut = phi=Q;
mda* (P — (P+phis+phi«P)/(lamda + ...
phisPsphi));

n Q = Q + (Paphi)/(lamda + ...
phisPsphi)« (data{l} (i,6) - sample_out);
1 ddpsi_est(i,1) = Q;

1 end
15 figure(l);plot(1:400,ddpsi_est)
1 ddpsi_est (end)

eye (1,

% Q = zeros(
n % lamda =
n lamda = 1;
n ddtheta_est = zeros(400,1);
2 for i=1:400
% phi data{l}(i,4)"2 - data{1}(i,2)"2;
% sample_out = phi=Q;
P = 1/lamda« (P - (Ps«phi«phi«P)/ (lamda + ...
phisPsphi});
% Q=0 + (P+xphi)/ (lamda + ...
phi+P«phi)«+ (data{l}(i,7) - sample_out);
ddtheta est(i,1) = Q;

» end
n figure(2);plot (1:400,ddtheta est)
» ddtheta_est (end)

zeros (400, 1) ;

2 phi = data{1}(i,3)"2 - data{1}(i,5)"2;

42 sample_out = phi+Q;

2 P = 1/lamda+ (P - (P«phisphi«P)/(lamda + ...
phi«P«phi));

4“4 Q=0 + (Psphi)/(lamda + ..
phixP«phi) (data{l}(i, E) — sample_out);

5 ddphi_est (i, 1) = Q;

4 end

5 figure(3);plot (1:400,ddphi_est)
s ddphi_est (end)

[Fig. 10] Algorithm for the RLS estimation

0 &0 100 1B 200 280 30 380 200

(@) RLS estimation value of ¢

0 Eil 100 10 200 280 30 0 400

(b) RLS estimation value of
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[Fig. 11] Algorithm for the RLS estimation

According to [Fig. 11], three converged parameter

values are shown in <Table 4>.

(Table 4) Comparison of original values with estimated
values using RLS estimation method

Parameter Estimated Value QOriginal Value
) 0.4187E-4 0.5084E-4
9 0.3098E-4 0.5084E-4
b 6.1211E-7 0.2798E-4

When the RLS method is used, a parameter value of
¥ becomes way off compared to the one obtained using
the batch method. Except that, the other two
parameters nicely converge though those values are
more off from the original parameter values than the
one obtained using batch method.

9. Conclusion

In this paper, we showed system identification
procedures for the quadrotor UAV using batch and
RLS estimation methods.
quadrotor UAV model is adopted and simplified since
we only focus on the hovering operation. Angular

The commonly known

accelerations of the roll, pitch, and yaw data required
for the hovering maneuver are analyzed and shown to
be convergent. Also, conditional status using SNR, the
robustness of system identification using noise PDF,

and real-time parameter estimation using the RLS

method are performed for the additional parameter

estimations.
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