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배치추정기법과 RLS추정기법을 사용한
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정성훈

초당대학교 항공학부 드론학과

Abstract   UAVs began to be actively applied to so-called 3D jobs, including the autonomous 

exploration, investigation, mapping, search and rescue, etc. since the mid-2000s. With this global trend, 

having a precise controllability of the UAV will certainly revolutionize the life of the modern human in the 

aspect of tremendous applications of the UAV. In the first part, a simplified dynamic model of the UAV 

identified using system identification techniques is compared with the previously built time-discrete linear 

model. In the second part, the three parameters of the dynamic model are estimated using the batch and 

RLS methods. Angular acceleration data of the quadrotor UAV at the hovering maneuver are analyzed and 

shown to be converging at all time. Also, according to the quadrotor flight data from both experiments 

and MATLAB simulations, the batch estimation method turns out to be more accurate than the RLS 

estimation method based on the comparison of final parameter values.
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요 약   무인항공기는 2000년대 중반부터 탐색, 조사, 매핑, 수색 및 구조 등의 3D 작업에 적극적으로 사용되기 

시작했다. 이러한 세계적인 추세에 따라, 무인항공기의 정밀한 제어는 엄청난 응용 산업들의 측면에 있어서 혁명을 

가져올 것이다. 논문의 첫 번째 파트에서는 시스템식별 기법을 사용하여 간략화 된 무인항공기의 모델을 이전의 

이산시간 선형모델과 비교분석 한다. 두 번째 파트에서는 동적 모델의 세 가지 변수가 배치추정기법과 RLS추정기

법을 사용하여 추정된다. 쿼드로터 무인항공기 호버링 기동 시의 각가속도 데이터가 항상 수렴한다고 분석되었다. 

또한 실험 및 MATLAB 시뮬레이션의 쿼드로터 무인항공기 비행 데이터에 의하면, 배치추정기법이 RLS추정기법

보다 더 정확하다고 판명되었다.

• 주제어 : 배치, 쿼드로터, RLS, 시스템식별, 무인항공기
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1. Introduction

Flying objects, such as the unmanned aerial vehicles 

(UAV), are getting to be a necessary item which a 

nation, a company, and a person should possess to 

utilize in various fields [1].

The UAVs, or also called as drones, are attracting 

attention as one of the major industries that will be 

popular in the near future. The UAVs, which have 

limitless application areas, are considered as one of the 

leading players in the fourth industrial revolution, that 

is, in the era of physical, digital, and biological 

technology convergence [2,3,4].

New light on the value of the UAV has acted as a 

catalyst to further highlight the importance of the 

UAV. In fact, not only the UAVs, but also other 

unmanned systems are actively being researched to 

prepare the fourth industrial revolution [5,6].

With this global trend, having a precise 

controllability of the UAV will certainly revolutionize 

the life of the modern human in the aspect of 

tremendous applications of the UAV.

Throughout the paper, a quadrotor UAV dynamic 

model will be simplified and verified using two 

methods, including batch and recursive least squares 

(RLS) methods for the system identification [7,8,9].

The flow of this paper is as follows. Section 2 

explains the UAV governing model and Section 3 

describes the setup for the data acquisition. Section 4 

illustrates parameter estimation and Section 5 shows 

the convergence of estimates. From Section 6 to 

Section 8, we show the conditional status of an 

inverted matrix using singular value and the signal to 

noise ratio (SNR), the robustness of system 

identification using the noise probability density 

function (PDF), and real-time and closed loop state and 

parameter estimation. Lastly, Section 9 contains the 

conclusion of this paper.

2. UAV Governing Model

The same governing models of quadrotor UAV 

shown in [10] are used in this paper. Dynamic models 

of a quadrotor UAV are very well known and most 

quadrotor models are appearing to be very similar. A 

minor difference is to use the z-axis as going upward 

or downward.

When a path waypoint is applied to the system as an 

input, the quadrotor dynamic model computes required 

motor PWM and results in angular accelerations of the 

roll (), pitch ( ), and yaw (). The system 

eventually results in a next position waypoint ([Fig. 1]).

[Fig. 1] Diagram of quadrotor UAV model

The quadrotor dynamic model derived in [5] is,


  

 





  

 





  




(1)

in which the system inputs, U1, U2, U3, and Ω, can be 

rewritten as

  



  




  


 
 


   

                       (2)

where R is the rotation matrix, ϕ is the roll angle, θ is 
the pitch angle, ψ is the yaw angle, Ωi is the ith rotor 

speed, Ix,y,z is the body inertia along x, y, and z-axis, 

J is the propeller inertia, b is the thrust factor, d is the 

drag factor, and l is the propeller length.

Though the Eq. 1 contains actuator actions, 

gyroscopic effects, and propeller rotations, the influence 

of actuator actions is the only important effects among 

three influences. So, the Eq. 1 can be simplified as,
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 




 




 




(3)

By substituting the Eq. 2 into the Eq. 3, we can finally 

achieve

 







 







 





 
 



(4)

3. Setup for the Data Acquisition

In this paper, the main control objective is to make 

a quadrotor UAV (AR.Drone [11]) hovers at one 

position without tilting in any other direction. There is 

a built-in function for the hovering manipulation of the 

AR.Drone UAV, but the hovering function does not 

properly work according to experiments. To achieve 

hovering behavior, PID controllers for roll, pitch, and 

yaw angles are designed with controller coefficients of 

  ,   , and   . It is implemented in code as 

shown in [Fig. 2].

[Fig. 2] PID controller for pitch angle of UAV

Using PID controllers, data were collected for 15 s 

and total hundred data sets were collected. The 

timestep of the Wifi signal which UAV uses is 0.05 s. 

Overall experiment setup is shown in [Fig. 3(a)].

(a) Data gathering system set up

(b) GUI for UAV behavior monitoring

[Fig. 3] Experiment set up

Also, for effective experiments, the GUI shown in 

[Fig. 3(b)] is developed using Processing open source 

computer programming language [12] to monitor and 

save the data of the real time video (from front camera 

of the UAV), pitch angle, roll angle, yaw angle, and 

altitude.

The UAV flight is also simulated using the 

MATLAB/Simulink toolbox developed by [13]. To 

obtain the desired UAV data, the Simulink model is 

modified as shown in [Fig. 4]. The modified parts are:

1. Error is introduced to xy data acquisition with 0 

mean and 0.01 variance,

2. Error is introduced to z data acquisition with 0 

mean and 5 variance,

3. The z data is set to be sinusoidal with an 

amplitude of 2, the frequency of ∙∙  

rad/sec, and phase of   rad. The visual 

simulation is shown in [Fig. 5].
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[Fig. 4] UAV Simulink model

[Fig. 5] The graphic output of the UAV Simulink model 

shown in [Fig. 4]

4. Parameter Estimation

In this section, parameter estimation using RLS 

method is performed. According to the RLS parameter 

estimation method for the linear static process [14], we 

can set

    (5)

where e is the error, yp is the observation, KM is the 

model parameter, u is the system input, KMu is the 

model prediction, and k is the given step time.

For the RLS method, the cost function defined as,

 
 



   
 



  
 (6)

has to be minimized to obtain the parameter KM where 

N is the total number of data sets. To find the 

minimum, one first determines the first derivative with 

regard to KM as,

 ′



 



     (7)

so that, the optimal choice of KM, or , becomes








 


 



 

 (8)

where   is the estimate of K.

By applying the Eq. 8 to the Eq. 4, we can get

 







 







 





 
 



(9)

Then, the Eq. 6 becomes

  


 








 




  


 








  




  


 








 
 

 




  

(10)

where  ,  , and   are cost functions of roll, 

pitch, and yaw angles.

Finally, the Eq. 8 becomes




 








  


 






  





 








 


  






 





 

 






 
 

  


  






 
 

 


(11)
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The result of the estimated parameter values is 

shown in <Table 1>.

<Table 1> Comparison of original values with estimated 

values

Parameter Estimated Parameter Original Parameter

 0.3968E-4 0.5084E-4

 0.4795E-4 0.5084E-4

 0.0018E-4 0.2798E-4

5. Convergence of Estimates

In this section, we check if the distribution of 

parameter estimates converge to a normal distribution 

using a histogram technique and find asymptotic 

covariances, that is, the covariance matrices from data.

First of all, the type of distribution is checked by 

referring [15] as,




 



 ∈  (12)

with

  lim
→∞

∙′′
  lim

→∞
∙′′

  lim
→∞

∙′′

(13)

where   is the ,   is the prediction 

error,   is the parameter vector,  ,  , and   are 

covariance matrices of the roll, pitch, and yaw angles, 

E is the expected value, * represents an asymptotic 

value, and Z
N is the batch of data from the system. 

The Eq. 12 means that the random variable on the left 

converges with the normal distribution with zero mean 

and covariance matrix Q. 

In the Eq. 13, with the assumption that ′ , ′ , 
and ′  are independent, it can be stated as

   ∈   (14)

with

  
″  ″   (15)

where the covariance matrix   is given in the Eq. 13. 

In conclusion, the obtained results are shown in [Fig. 6].

(a) Normal distribution of 

(b) Normal distribution of 

(c) Normal distribution of 

[Fig. 6] Normal distributions of three angular accelerations

Covariance matrices of the asymptotic distribution in 

the Eq. 15 can be approximated as,

∼

 (16)
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in some special cases when data and noises are 

sequences of independent random variables with zero 

value and variance  . In this case, the matrix P in Eq. 

15 can be rewritten as,

   
 
 (17)

Having processed N data points and determined  , 

the Eq. 17 can be rewritten as,

 








  








 



  


  





(18)

Convergence of the parameters is checked by changing 

the number of the total experiment from 1 to 100 

measurements as shown in [Fig. 7]. Here, each 

parameter tends to be constant as the number of 

measurements increase. This illustrates all parameters 

converge well.

(a) Convergence of 

(b) Convergence of 

(c) Convergence of 

[Fig. 7] Convergence of three angular accelerations

6. Conditional Status of Inverted 
Matrix using Singular Value 

and SNR

It is required to check if we have a well-conditioned 

matrix inversion, ideally all singular values in the same 

order of magnitude, in the system identification 

procedure. Also, we need to relate the condition number 

to the SNR of the data to check whether the 

persistency of excitation condition has been met.

To check whether a system is well-conditioned or 

ill-conditioned, we need to calculate a condition number 

of R(N) as,

  (19)

where the matrix R comes from







⋯





 (20)

In the Eq. 19, the big matrix Q  does not need to be 

calculated since all information is contained in the small 

matrix   [15]. Also, considerable computations can be 

saved by using a built-in function in MATLAB, 

 , to compute the matrix A if the matrix 

A has many more rows than columns ([Fig. 8]).
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[Fig. 8] Application of the MATLAB built-in function, 

 , to the parameter 


In [Fig. 8], the function svd represents the singular 

value decomposition [16]. Since the matrix S has an 

almost same order of magnitude, it is a fairly 

well-conditioned matrix.

The SNR can be defined as the reciprocal of the 

coefficient of variation, i.e. ratio of the mean to 

standard deviation of a signal or measurement [17,18],

 


(21)

where   is the signal mean or expected value and   is 

the standard deviation of the noise or an estimate 

thereof. Calculated singular values and SNRs are 

shown in <Table 2>.

<Table 2> Calculated singular values and SNRs

Parameter Singular Value SNR

 2.3005, 0.1065 -0.0849

 2.3228, 0.1192 0.0087

 3.2154, 0.5910, 0.1522, 0.0446 0.0315

Persistency of the excitation condition is met in all 

three cases. The   is particularly the most stable 

among the three parameters against input noise.

7. Robustness of System 
Identification using Noise PDF

The robustness of identification procedures to 

outliers and the optimality criterion producing the 

minimum parameter variance are dependent upon the 

PDF since normal noise implies that the quadratic 

criteria are the best.

The mean square error is defined as

 



  



 








 




 



  



 








 




 



  



 








 
 

 




  

(22)

and PDFs of three parameters are shown in [Fig. 9] 

and <Table 3>.

(a) Noise PDF of 

(b) Noise PDF of 

(c) Noise PDF of 

[Fig. 9] Noise PDF of three angular accelerations
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<Table 3> Comparison of original values with estimated 

values in noise PDF

Parameter Estimated Value Original Value

 0.3993E-4 0.5084E-4

 0.5818E-4 0.5084E-4

 0.0019E-4 0.2798E-4

8. Real-time and Closed Loop State 
and Parameter Estimation

The recursive system parameter estimation is 

performed to determine if estimates are consistent with 

parameters previously obtained using the batch 

estimation method.

There are multiple methods to calculate recursive 

parameters including RLS, recursive instrumental 

variable (RIV), recursive prediction error (RPE), 

recursive pseudolinear regressions (RPLR), etc. When 

the time-varying linear system is investigated, the RLS 

method can be used by considering the effect from the 

time-varying system.

By introducing the white Gaussian noise, w, we can 

achieve



 

 

(23)

Then, the Kalman filter (KF) interpretation gives

 

 











(24)

The Eq. 23 and Eq. 24 are implemented in MATLAB 

as shown in [Fig. 10] and convergence of the 

parameters is shown in [Fig. 11].

[Fig. 10] Algorithm for the RLS estimation

(a) RLS estimation value of 

(b) RLS estimation value of 
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(c) RLS estimation value of 

[Fig. 11] Algorithm for the RLS estimation

According to [Fig. 11], three converged parameter 

values are shown in <Table 4>.

<Table 4> Comparison of original values with estimated 

values using RLS estimation method

Parameter Estimated Value Original Value

 0.4187E-4 0.5084E-4

 0.3298E-4 0.5084E-4

 6.1211E-7 0.2798E-4

When the RLS method is used, a parameter value of 

  becomes way off compared to the one obtained using 

the batch method. Except that, the other two 

parameters nicely converge though those values are 

more off from the original parameter values than the 

one obtained using batch method.

9. Conclusion

In this paper, we showed system identification 

procedures for the quadrotor UAV using batch and 

RLS estimation methods. The commonly known 

quadrotor UAV model is adopted and simplified since 

we only focus on the hovering operation. Angular 

accelerations of the roll, pitch, and yaw data required 

for the hovering maneuver are analyzed and shown to 

be convergent. Also, conditional status using SNR, the 

robustness of system identification using noise PDF, 

and real-time parameter estimation using the RLS 

method are performed for the additional parameter 

estimations.
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