Browse > Article
http://dx.doi.org/10.7840/kics.2014.39C.1.47

Vision-Based Trajectory Tracking Control System for a Quadrotor-Type UAV in Indoor Environment  

Shi, Hyoseok (일본 오사카대학 대학원 공학연구과 지능.기능 창성공학부)
Park, Hyun (광운대학교 예술로봇연구소)
Kim, Heon-Hui (광운대학교 예술로봇연구소)
Park, Kwang-Hyun (광운대학교 로봇학부)
Abstract
This paper deals with a vision-based trajectory tracking control system for a quadrotor-type UAV for entertainment purpose in indoor environment. In contrast to outdoor flights that emphasize the autonomy to complete special missions such as aerial photographs and reconnaissance, indoor flights for entertainment require trajectory following and hovering skills especially in precision and stability of performance. This paper proposes a trajectory tracking control system consisting of a motion generation module, a pose estimation module, and a trajectory tracking module. The motion generation module generates a sequence of motions that are specified by 3-D locations at each sampling time. In the pose estimation module, 3-D position and orientation information of a quadrotor is estimated by recognizing a circular ring pattern installed on the vehicle. The trajectory tracking module controls the 3-D position of a quadrotor in real time using the information from the motion generation module and pose estimation module. The proposed system is tested through several experiments in view of one-point, multi-points, and trajectory tracking control.
Keywords
UAV; quadrotor; trajectory tracking control; nonlinear system; 3-D pose;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, "Quadrotor helicopter flight dynamics and control: theory and experiment," in Proc. AIAA Guidance, Navigation and Control Conf. Exhibit, pp. 1-20, Hilton Head, South Carolina, Aug. 2007.
2 N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, "The GRASP multiple micro-UAV testbed," IEEE Mag. Robotics and Automation, vol. 17, no. 3, pp. 56-65, Sept. 2010.   DOI   ScienceOn
3 D. Cabecinhas, R. Naldi, L. Marconi, C. Silvestre, and R. Cunha, "Robust take-off for a quadrotor vehicle," IEEE Trans. Robotics, vol. 28, no. 3, pp. 734-742, Jun. 2012.   DOI   ScienceOn
4 B. Herisse, T. Hamel, R. Mahony, and F.-X. Russotto, "Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow," IEEE Trans. Robotics, vol. 28, no. 1, pp. 77-89, Feb. 2012.   DOI   ScienceOn
5 R. Zhang, Q. Quan, and K. Y. Cai, "Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances," IET Control Theory & Appl., vol. 5, no. 9, pp. 1140-1146, Jun. 2011.   DOI   ScienceOn
6 Z. Zuo, "Trajectory tracking control design with command-filtered compensation for a quadrotor," IET Control Theory & Appl., vol. 4, no. 11, pp. 2343-2355, Nov. 2010.   DOI   ScienceOn
7 N. Guenard, T. Hamel, and R. Mahony, "A practical visual servo control for an unmanned aerial vehicle," IEEE Trans. Robotics, vol. 24, no. 2, pp. 331-340, Apr. 2008.   DOI   ScienceOn
8 O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, and L. Eck, "Imagebased visual servo control of the translation kinematics of a quadrotor aerial vehicle," IEEE Trans. Robotics, vol. 25, no. 3, pp. 743-749, Jun. 2009.   DOI   ScienceOn
9 Firefly, Retrieved Jan., 6, 2013, from http://sen seable.mit.edu/flyfire/
10 Vicon MX System, Retrieved Jan., 6, 2013, from http://www.vicon.com/
11 G. Ducard and R. D'Andrea, "Autonomous quadrotor flight using a vision system and accommodating frames misalignment," in Proc. IEEE Int'l symp. Industrial embedded systems (SIES '09), pp. 261-264, Switzerland, Jul. 2009.
12 J. H. Hwang, A study of integrated controller for the quadrotor flying robot, Master thesis, Sejong University, 2009.
13 F. N. Fritsch and R. E. Carlson, "Monotone piecewise cubic interpolation," SIAM J. Numer. Anal., vol. 17, no. 2, pp. 238-246, 1980.   DOI   ScienceOn
14 H.-H. Kim, K.-W. Park, and Y.-S. Ha, "3D pose estimation of a circular feature with a coplanar point," J. IEEK-System and Control, vol. 48, no. 5, pp. 382-393. 2012.
15 S. Grzonka, G. Grisetti, and W. Burgard, "A fully autonomous indoor quadrotor," IEEE Trans. Robotics, vol. 28, no. 1, pp. 90-100, Feb. 2012.   DOI   ScienceOn
16 Ascending Technologies, Retrieved Jan., 6, 2013, from http://www.asctec.de.
17 Hyvision system, Retrieved Jan., 6, 2013, from http://wwwhyvision.co.kr.
18 G. F. Franklin, M. L. Workman, and D. Powell, Feedback control of dynamic systems 6th Ed., Pearson, 2010.