• Title/Summary/Keyword: Quadrature formula

Search Result 31, Processing Time 0.022 seconds

ERROR INEQUALITIES FOR AN OPTIMAL QUADRATURE FORMULA

  • Ujevic, Nenad
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.65-79
    • /
    • 2007
  • An optimal 3-point quadrature formula of closed type is derived. It is shown that the optimal quadrature formula has a better error bound than the well-known Simpson's rule. A corrected formula is also considered. Various error inequalities for these formulas are established. Applications in numerical integration are given.

Robust Structural Optimization Using Gauss-type Quadrature Formula (가우스구적법을 이용한 구조물의 강건최적설계)

  • Lee, Sang-Hoon;Seo, Ki-Seog;Chen, Shikui;Chen, Wei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.745-752
    • /
    • 2009
  • In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

A New Unified Scheme Computing the Quadrature Weights, Integration and Differentiation Matrix for the Spectral Method

  • Kim, Chang-Joo;Park, Joon-Goo;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1188-1200
    • /
    • 2015
  • A unified numerical method for computing the quadrature weights, integration matrix, and differentiation matrix is newly developed in this study. For this purpose, a spline-like interpolation using piecewise continuous polynomials is converted into a global spline interpolation formula, with which the quadrature formulas can be derived from integration and differentiation of the transformed function in an exact manner. To prove the usefulness of the suggested approach, both the Lagrange and tension spline interpolations are represented in exactly the same form as global spline interpolation. The applicability of the proposed method on arbitrary nodes is illustrated using two different sets of nodes. A series of validations using three test functions is conducted to show the flexibility in selecting computational nodes with the present method.

RADAU QUADRATURE FOR A RATIONAL ALMOST QUASI-HERMITE-FEJÉR-TYPE INTERPOLATION

  • Kumar, Shrawan;Mathur, Neha;Rathour, Laxmi;Mishra, Vishnu Narayan;Mathur, Pankaj
    • Korean Journal of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • The aim of this paper is to obtain a Radau type quadrature formula for a rational interpolation process satisfying the almost quasi Hermite Fejér interpolatory conditions on the zeros of Chebyshev Markov sine fraction on [-1, 1).

Error Performance of BPSK and QPSK Signals in Mobile-Satellite Communication Channel (이동 위성 통신 채널에서의 BPSK 및 QPSK의 오율 특성)

  • 박해천;이희덕;황인광;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.7
    • /
    • pp.1224-1233
    • /
    • 1994
  • The error performance of BPSK and QPSK signals in mobile satellite channel is investigated considering nonlinearity of TWTA (Traveling Wave Tube Amplifier) in the presence of AWGN(Additive White Gaussian Noise) on the uplink and downlink paths. It is assumed that the fading on the downlink path forms a Rician distribution. The Rician distribution is approximated by discrete probability values. The values are firstly found by Classical Moment Technique. Finally, the error probability is evaluated using approximate discrete values of Rician distribution and the Gaussian Quadrature Formula.

  • PDF

Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • Numerical solution to linear bending analysis of circular plates is obtained by the method of harmonic differential quadrature (HDQ). In the method of differential quadrature (DQ), partial space derivatives of a function appearing in a differential equation are approximated by means of a polynomial expressed as the weighted linear sum of the function values at a preselected grid of discrete points. The method of HDQ that was used in the paper proposes a very simple algebraic formula to determine the weighting coefficients required by differential quadrature approximation without restricting the choice of mesh grids. Applying this concept to the governing differential equation of circular plate gives a set of linear simultaneous equations. Bending moments, stresses values in radial and tangential directions and vertical deflections are found for two different types of load. In the present study, the axisymmetric bending behavior is considered. Both the clamped and the simply supported edges are considered as boundary conditions. The obtained results are compared with existing solutions available from analytical and other numerical results such as finite elements and finite differences methods. A comparison between the HDQ results and the finite difference solutions for one example plate problem is also made. The method presented gives accurate results and is computationally efficient.

Error Probabilities for Digital Transmission in Correlated Gaussian Fading Channels (상관가우스 페이딩 채널에서 디지틀전송에 대한 오율)

  • 한영렬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.1
    • /
    • pp.18-24
    • /
    • 1984
  • Calculation of error probabilities for a coherent phase-shilft keyed communication system operating in a transionospheric scintillation channel is accomplished by means of the Gauss-quadrature integration formula. The channel model used, patterned after Rino's work, is slowly flat fading wherein the envelope of the received signal is modeled as the envelope of correlated Gaussian quadrature random processes. The error probability for the scintillation channel is calculated using actual ionospheric scintillation data for transmission in the UHF region(30-300MHz).

  • PDF

ONE-SIDED BEST SIMULTANEOUS $L_1$-APPROXIMATION

  • Park, Sung-Ho;Rhee, Hyang-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.155-167
    • /
    • 1996
  • Let X be a compact Hausdorff space, C(X) denote the set of all continuous real valued functions on X and $\ell \in N$ be any natural number.

  • PDF

THE CAPABILITY OF PERIODIC NEURAL NETWORK APPROXIMATION

  • Hahm, Nahmwoo;Hong, Bum Il
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.167-174
    • /
    • 2010
  • In this paper, we investigate the possibility of $2{\pi}$-periodic continuous function approximation by periodic neural networks. Using the Riemann sum and the quadrature formula, we show the capability of a periodic neural network approximation.