• Title/Summary/Keyword: Quadratic stability

Search Result 344, Processing Time 0.031 seconds

The design method research of the control system for Autonomous Underwater Vehicle (AUV) using Linear Matrix Inequality (LMI)

  • Nasuno, Youhei;Shimizu, Etsuro;Aoki, Taro;Yomamoto, Ikuo;Hyakudome, Tadahiro;Tsukioka, Satoshi;Yoshida, Hiroshi;Ishibashi, Shojiro;Ito, Masanori;Sasamoto, Ryoko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1060-1065
    • /
    • 2005
  • An Independent Administrative Corporation Japan Agency for Marine-Earth Science and Technology (JAMSTEC) is developing light-and-small Autonomous Underwater Vehicles (AUV)$^{1)}$, named 'MR-X1' (Marine Robot Experimental 1), which can cruise, investigate and observe by itself without human's help. In this paper, we consider the motion control problem of 'MR-X1' and derive a controller. Since the dynamic property of 'MR-X1' is changed by the influence of the speed, the mathematical model of 'MR-X1' becomes the nonlinear model. In order to design a controller for 'MR-X1', we generally apply nonlinear control theories or linear control theories with some constant speed situation. If we design a controller by applying Linear Quadratic (LQ) optimal control theory, the obtained controller only compensates t e optimality at the designed speed situation, and does not compensate the stability at another speed situations. This paper proposes a controller design method using Linear Matrix Inequalities (LMIs)$^{2),3),4)}$, which can adapt the speed variation of 'MR-X1'. And examples of numerical analysis using our designed controller are shown.

  • PDF

Modeling and coupling characteristics for an airframe-propulsion-integrated hypersonic vehicle

  • Lv, Chengkun;Chang, Juntao;Dong, Yilei;Ma, Jicheng;Xu, Cheng
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.553-570
    • /
    • 2020
  • To address the problems caused by the strong coupling of an airbreathing hypersonic vehicle's airframe and propulsion to the integrated control system design, an integrated airframe-propulsion model is established, and the coupling characteristics between the aircraft and engine are analyzed. First, the airframe-propulsion integration model is established based on the typical nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle and the one-dimensional dual-mode scramjet model. Thrust, moment, angle of attack, altitude, and velocity are used as transfer variables between the aircraft model and the engine model. The one-dimensional scramjet model can accurately reflect the working state of the engine and provide data to support the coupling analysis. Second, owing to the static instability of the aircraft model, the linear quadratic regulator (LQR) controller of the aircraft is designed to ensure attitude stability and height tracking. Finally, the coupling relationship between the aircraft and the engine is revealed through simulation examples. The interaction between vehicle attitude and engine working condition is analyzed, and the influence of vehicle attitude on engine safety is considered. When the engine is in a critical working state, the attitude change of the aircraft will not affect the engine safety without considering coupling, whereas when coupling is considered, the attitude change of the aircraft may cause the engine unstart, which demonstrates the significance of considering coupling characteristics.

Improvements of the CMFD acceleration capability of OpenMOC

  • Wu, Wenbin;Giudicelli, Guillaume;Smith, Kord;Forget, Benoit;Yao, Dong;Yu, Yingrui;Luo, Qi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2162-2172
    • /
    • 2020
  • Due to its computational efficiency and geometrical flexibility, the Method of Characteristics (MOC) has been widely used for light water reactor lattice physics analysis. Usually acceleration methods are necessary for MOC to achieve acceptable convergence on practical reactor physics problems. Among them, Coarse Mesh Finite Difference (CMFD) is very popular and can drastically reduce the number of transport iterations. In OpenMOC, CMFD acceleration was implemented but had the limitation of supporting only a uniform CMFD mesh, which would often lead to splitting MOC source regions, thus creating an unnecessary increase in computation and memory use. In this study, CMFD acceleration with a non-uniform Cartesian mesh is implemented into OpenMOC. We also propose a quadratic fit based CMFD prolongation method in the axial direction to further improve the acceleration when multiple MOC source regions are contained in one CMFD coarse mesh. Numerical results are presented to demonstrate the improvement of the CMFD acceleration capability in OpenMOC in terms of both efficiency and stability.

Fuzzy H2/H Controller Design for Delayed Nonlinear Systems with Saturating Input (포화입력을 가지는 시간지연 비선형 시스템의 퍼지 H2/H 제어기 설계)

  • Cho, Hee-Soo;Lee, Kap-Rai;Park, Hong-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.239-245
    • /
    • 2002
  • In this Paper, we present a method for designing fuzzy $H_2/H_{\infty}$ controllers of delayed nonlinear systems with saturating input. Takagi-Sugeno fuzzy model is employed to represent delayed nonlinear systems with saturating input. The fuzzy control systems utilize the concept of the so-called parallel distributed compensation(PDC). Using a single quadratic Lyapunov function, the globally exponential stability and $H_2/H_{\infty}$ performance problem are discussed. And a sufficient condition for the existence of fuzzy $H_2/H_{\infty}$ controllers is given in terms of linear matrix inequalities(LMIs). The designing fuzzy $H_2/H_{\infty}$ controllers minimize an upper bound on a linear quadratic performance measure. Finally, a design example of fuzzy $H_2/H_{\infty}$ controller for uncertain delayed nonlinear systems with saturating input.

GA based Selection Method of Weighting Matrices in LQ Controller for SVC (GA를 이용한 SVC용 LQ 제어기의 가중행렬 선정 기법)

  • 허동렬;이정필;주석민;정형환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.40-50
    • /
    • 2002
  • In this paper, we present a GA(Genetic Algorithm) approach to select weighting matrices of an optimal LQ(Linear Quadratic) controller for SVC(Static VAR Compensator). A SVC, one of the FACTS(Flexible AC Transmission System), constructed by a FC(Fixed Capacitor) and a TCR(Thyristor Controlled Reactor), was designed and implemented to improve the damping of a synchronous generator, as well as to control the system voltage Also, a design of LQ controller depends on choosing weighting matrices. The selection of weighting matrices which is not a trivial solution is usually carried out by trial and error. We proposed an efficient method using GA of finding weighting matrices for optimal control law. Thus, we proved the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system by eigenvalues analysis and simulation.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF

Impacts of Dietary Vitamins and Trace Minerals on Growth and Pork Quality in Finishing Pigs

  • Choi, S.C.;Chae, B.J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1444-1449
    • /
    • 2001
  • Two feeding trials were conducted to determine the effect of inclusion levels or deletion of vitamin-trace mineral (VM) premixes on growth performance and pork quality in finishing pigs. In exp. 1, a total of ninety-six crossbred pigs $(Landrace\;{\times}\;Yorkshire\;{\times}\;Duroc,\;85.09{\pm}3.12kg)$ were used for a 4-week feeding triaL Treatments were premix supplementation at the level of 50% (Control), 100%, 150%, and 200% of NRC (1998) requirements for vitamins and trace minerals. In exp. 2, a total of one hundred and eight crossbred pigs $(Landrace\;{\times}\;Yorkshire\;{\times}\;Duroc,\;84.76{\pm}0.58kg)$ were used for a 4-week feeding trial. Treatments were premix supplementation at the level of 0% (Control), 200% VM, and 200% vitamin E and Se listed in NRC (1998) requirements. Average daily gain (ADG) and feed/gain (F/G) were the highest at 150% VM addition level (quadratic, p<0.05) among treatments. Dressing percentage and backfat thickness in pigs were not affected by different addition levels of VM premixes. Pork stability in terms of TBARS was linearly (p<0.05) improved as dietary VM premix was increased (exp. 1). ADG, F/G and pork stability (TBARS) were also reduced (p<0.05) when VM premixes were deleted. However, supplementation of vitamin E and Se improved (p<0.05) ADG and pork stability when pigs were fed diets without VM premixes (exp. 2). In conclusion, deleting dietary VM premixes gave negative effects on growth performance and pork quality for the last 4 weeks of finishing period.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

Pole Placement Method to Move a Equal Poles with Jordan Block to Two Real Poles Using LQ Control and Pole's Moving-Range (LQ 제어와 근의 이동범위를 이용한 조단 블록을 갖는 중근을 두 실근으로 이동시키는 극배치 방법)

  • Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.608-616
    • /
    • 2018
  • If a general nonlinear system is linearized by the successive multiplication of the 1st and 2nd order systems, then there are four types of poles in this linearized system: the pole of the 1st order system and the equal poles, two distinct real poles, and complex conjugate pair of poles of the 2nd order system. Linear Quadratic (LQ) control is a method of designing a control law that minimizes the quadratic performance index. It has the advantage of ensuring the stability of the system and the pole placement of the root of the system by weighted matrix adjustment. LQ control by the weighted matrix can move the position of the pole of the system arbitrarily, but it is difficult to set the weighting matrix by the trial and error method. This problem can be solved using the characteristic equations of the Hamiltonian system, and if the control weighting matrix is a symmetric matrix of constants, it is possible to move several poles of the system to the desired closed loop poles by applying the control law repeatedly. The paper presents a method of calculating the state weighting matrix and the control law for moving the equal poles with Jordan blocks to two real poles using the characteristic equation of the Hamiltonian system. We express this characteristic equation with a state weighting matrix by means of a trigonometric function, and we derive the relation function (${\rho},\;{\theta}$) between the equal poles and the state weighting matrix under the condition that the two real poles are the roots of the characteristic equation. Then, we obtain the moving-range of the two real poles under the condition that the state weighting matrix becomes a positive semi-finite matrix. We calculate the state weighting matrix and the control law by substituting the two real roots selected in the moving-range into the relational function. As an example, we apply the proposed method to a simple example 3rd order system.

A Stability Analysis of Geosynthetics Reinforced Soil Slopes I. - Slope Stability Analysis Considering Reinforcing Effects - (토목섬유 보강 성토사면의 안정해석 I. - 보강효과를 고려한 사면안정해석 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.95-105
    • /
    • 2005
  • Generally, a modified version of limit equilibrium method can be used to evaluate a slope stability of the geosynthetic reinforced soil slopes. In most cases, resisting effects of geosynthetic reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. As we know, the pattern of normal stress distribution along the slip surface is the key factor in calculating the safety factor of slopes. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equations can be satisfied was proposed with assuming the normal stress distribution along the slip surface as quadratic curve with horizontal $\chi-coordinate$. A number of illustrative examples, including published slope stability analysis examples for the reinforced and unreinforced soil slopes, loading test of large scale reinforced earth wall and centrifuge model tests on the geotextile reinforced soil slopes, were analyzed. As a result, it is shown that the newly suggested method yields a relatively accurate factor of safety for the reinforced and unreinforced soil slopes.