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1. INTRODUCTION 

Fig.1 Autonomous Underwater Vehicle ‘MR-X1’ 

 
Although 70 percents on the surface of the Earth is the 

ocean, a lot of unexplored parts have been left. In these days, 
efficient investigations of the ocean and the seabed have been 
interested. However, undersea is the extreme environment that 
we can’t step into easily. Therefore operating robots for taking 
over from human being is desired. If such kind of robots had 
been developed, we can avoid danger. 

In order to realize it, an Independent Administrative 
Corporation Japan Agency for Marine-Earth Science and 
Technology (JAMSTEC) is developing light-and-small 
Autonomous Underwater Vehicles (AUV) to explore the ocean. 
The AUV named ‘MR-X1’ (Marine Robot Experimental 1) 
can cruise, investigate and observe by itself without human’s 
help. In order to be able to turn in a small space and explore 
efficiently, ‘MR-X1’ has five thrusters. One main thruster is 
for the forward and the backward motion, two thrusters are for 
the horizontal motion and two thrusters are for the vertical 
motion. 

In this paper, the motion control problem of this AUV 
‘MR-X1’ is considered. In order to operate ‘MR-X1’, five 
thrusters have to be controlled appropriately. Since two 
vertical thrusters set up by inclining from the perpendicular, if 
these vertical thrusters are rotated, ‘MR-X1’ not only moves 
the vertical direction but also moves the horizontal direction. 
In the case of considering the cruising ‘MR-X1’ with the 
constant altitude, both vertical and horizontal thrusters have to 
be controlled appropriately. The present paper considers that 
‘MR-X1’ is controlled to make it go straight on surge direction, 
and stop at the targeting point with the constant altitude. 

Since the dynamic property of ‘MR-X1’ is changed by the 
influence of the speed, the mathematical model of ‘MR-X1’ 
becomes the nonlinear model. In order to design a controller 
for ‘MR-X1’, we generally apply nonlinear control theories or 
linear control theories with some constant speed situation. If 
the controller is designed by applying the Linear Quadratic 

(LQ) optimal control theory, the obtained controller only 
compensates the optimality at the designed speed situation, 
and does not compensate the stability at another speed 
situations. In order to solve this problem, this paper proposes a 
controller design method using Linear Matrix Inequalities 
(LMIs), which can adapt the speed variation of ‘MR-X1’. By 
applying this method, we will be able to find suitable gain on 
the speed variation of ‘MR-X1’. And examples of numerical 
analysis using our designed controller are shown. 
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 Table 1 Principal specification of ‘MR-X1’ 
Dimensions 2.5[m](total length) × 0.8[m](width)

 × 1.2[m](height) 
Weight 800[kg] (in the air) 

Cruising Speed 2[kt] 
Maximum Depth 4200[m] 

Actuators 1. Main thruster (400W) 
2. Two horizontal thrusters (150W) 
3. Two vertical thrusters (150W) 
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2. EQUATION OF MOTION FOR ‘MR-X1’ M ：Inertial Matrix
 C(ν)  ：Matrix of Coriolis and Centripetal Terms
2.1 Coordinate system 

)  ：Damping MatrixD(νIn this paper, we use two coordinate systems. One is the 
Earth-fixed coordinate system and the other is the Body-fixed 
coordinate system. Fig.2 shows the relation between each 
coordinate system. In general, linear and angular velocities are 
represented by using Body-fixed coordinate system, but the 
translation to the Earth-fixed coordinate system is suitable to 
observe the motion of ‘MR-X1’. The matrix of coordinate 
transformation between the Earth-fixed coordinate system and 
the Body-fixed coordinate system becomes as follow. 

g(η)  ：Matrix of Restoring Forces and Moments
τ ：Thrusts
 

2.2.1 Inertial Matrix 
Inertial matrix is defined as the sum of inertial mass matrix 

 and added inertial matrix  due to the inertia of the 
urrounding fluid. 

RBM AM
s
 

 
ARB MMM +≡  (2.4)
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Position of the center of gravity of ‘MR-X1’ can be 

represented as [ ] with the Body-fixed coordinate 
system. It is assumed that the product of inertia  is 0, 
because ‘MR-X1’ has the symmetrical configuration. 
Furthermore, the added mass is also 0 except diagonal 
elements. 

GG zx ,0, T

∗∗I

∗∗A

 Fig.2 Coordinate system of ‘MR-X1’ 
 

νηη )(J=
•

 (2.1)
 

T  ：Position and angle vector with 
  the Earth-fixed coordinate system 

yzx ],,,,,[ ϕφϑη =
  

T  ：Linear and angular velocity vector 
with the Body-fixed coordinate system

rpvqwu ],,,,,[=ν  
 
 2.2.2 Matrix of Coriolis and Centripetal Terms 

The matrix of coriolis and centripetal terms is defined as 
the sum of the coriolis matrix of Rigid-body )(νRBC  and the 
coriolis matrix in ideal fluid )(νAC . 

 ：Position zyx ,,
ϕϑφ ,,  ：Angle 
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 )  ：Velocity transformation matrix (ηJ
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2.2 Dynamics of ‘MR-X1’ 

The motion of underwater vehicle is represented as the 
6DOF nonlinear equation5). In general, its motion can be 
treated as the motion of Rigid-body. The nonlinear equation is 
epresented as 

(2.9) 

r
  

τηννννν =+++
•

)()()( gDCM  (2.3)  
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w
 

here 2.2.3 Damping Matrix 
The damping matrix of ‘MR-X1’ in the fluid is represented 

s TTHMTHMTHMTHM KDnnX 4ρ=
01724.084628.0 nY +=

 (2.13)
a
 3  2 0155.0 THFTHFTHFTHF nn +

32

(2.14) 
},,,,,{)( rpvqwu NKYMZXdiagD −=ν  01577.002722.098582.0 THRTHRTHRTHR nnnY ++=

32

 (2.15) 
},,,,,{ |||||||||||| rNpKvYqMwZuXdiag rrppvvqqwwuu−  01512.002028.095576.0 TVLTVLTVLTVL nnnZ ++=

32

 (2.16) 
 

01526.002204.096669.0 TVRTVRTVRTVR nnnZ ++=  (2.17) 
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The first term is the force and the moment of the first order 

of the velocity, and the second term is the second order of the 
velocity. These values of the matrix components are obtained 
from experiments. 

 
2.2.4 Restoring Forces and Moments 

The position of the force of buoyancy of ‘MR-X1’ can be 
represented as [ ] T  with the Body-fixed coordinate 
ystem, so the restoring forces and moments are represented as 

BB zx ,0,
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here 

W：Force of gravity,   B：Force of buoyancy 
 

2.2.5 Thrusts 
In this paper, the following expression is used as the 

mathematical model of thrusts of ‘MR-X1’. These 
components are the function of the rotational speed of 
hrusters. t
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：Declination of vertical thrusters [rad]
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(2.10)

 
These thrusters have following limitations. 

55 ≤≤− THMn ,   −  12,,,12 ≤≤ TVRTVLTHRTHF nnnn
 
 

3. DESIGNING A CONTROL SYSTEM FOR ‘MR-X1’ 
The aim of developing ‘MR-X1’ is to construct the 

autonomous underwater vehicle that it not only follows the 
given path but also stops at the objective point and keeps the 
point to investigate, observe and operate. In order to realize 
these, five thrusters equipped on ‘MR-X1’ have to be 
controlled to be appropriate rotational speeds. In order to 
know the dynamic characteristic of ‘MR-X1’, the main 
thruster was only rotated firstly. Since the displacement 
toward to the heave direction occurred, to keep constant 
altitude, two vertical thrusters have to be rotated. However, 
vertical thrusters set up by heaving the inclination from the 
perpendicular. If these thrusters are rotated, ‘MR-X1’ not only 
moves the vertical direction but also changes the horizontal 
direction. Therefore, in the case of cruising ‘MR-X1’ with the 
constant altitude, these five thrusters have to be controlled 
appropriately. The present paper considers the controller 
design problem for ‘MR-X1’ to make it go straight on surge 
direction, and stop at the objective point with the constant 
altitude. It is obvious that this mechanical model of ‘MR-X1’ 
depends on the speed of each direction; surge, sway and heave. 
In order to design a controller, we have to consider effects of 
these speed variations. However, in our problem, the main 
thruster is used the different way compared with other 
thrusters; the main thruster is used for the straight cruising 
toward the surge direction with speed u, and other thrusters are 
used for holding attitude or following the path. This means 
that if other thrusters are controlled appropriately from the 
start, variations of speeds for vertical and horizontal directions 
can be controlled to become variation sufficiently small and 
we need not to consider effects of variations of speeds. 
Therefore, in this paper, we design a control system to adopt 
the variation of the speed for the surge direction. 

(2.11)

(2.12)

：Thrust of the main thruster 
：Thrust of the front horizontal thruster 
：Thrust of the rear horizontal thruster 
：Thrust of the portside vertical thruster  

3.1 Linearization ：Thrust of the starboard vertical thruster 
 In order to design a control system, we divide the 

mechanical model ‘MR-X1’ into surge motion part and the 
others and linearize the other part of the mechanical model 
except the surge direction speed u. The speed u is used as a 
parameter. Furthermore, the pitch angle and the pitch rate are 

：Position of the front horizontal thruster 
：Position of the rear horizontal thruster 
：Position of the portside vertical thruster 
：Position of the starboard vertical thruster 
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  neglected, because the control of the pitch angle is difficult 
from the constitutional character of ‘MR-X1’. The linearized 

odel is shown as follows. 

3.3 Designing a control system 
In this section, the control system is designed to control 

‘MR-X1’ moving toward the objective point. The control 
system is firstly designed using the linear quadratic (LQ) 
optimal control. Generally, in order to design the LQ optimal 
control system for linear systems, it is necessary to solve the 
Algebraic Riccati equation by using constant matrices A and B 
in the state equation. Since the Riccati equation is solved 
easily by using some computer softwares, the state feedback 
control system can be easily obtained. In order to apply the 
LQ control theory for ‘MR-X1’, we have to fix the cruising 
speed u. Therefore, the optimality of the obtained control 
system is only compensated about the one speed. However, 
the obtained control system does not compensate the stability 
in other speed situations. 

m
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◯Matrix of coriolis and centripetal terms In order to compensate the stability, we propose the new 

design method by using the LMI, which correspond to the 
Riccati inequality. The algorithm to solve the LMI has a 
property that can solve some number of LMIs simultaneously. 
By applying this property, it is considered that we can obtain 
the solution that satisfies the LMI condition under several 
speeds. The proposed strategy to design the control system is 
represented as follow. 
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◯Damping matrix 
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The LMI that corresponds to Riccati equation in LQ 

ptimal control on state equation (3.8) is represented as (3.4) o
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The constant matrix C corresponds to the weighting matrix 
in LQ optimal control. The speed parameter u including LMI 
is given appropriately. By applying the algorithm to solve the 
LMIs, we can obtain one solution X. In this case, the control 
nput τ  is represented as 

 
◯State variable 

T
LL ],[ νη=  (3.6)x

 i
 

w
 

here xXBT 1−−=  τ
 

(3.12) 
],,,[ ϕφYZL =    ],,,[ rpvwL =ν  η

 , Note that the solution X satisfies LMI conditions on all 
speed parameters. This means that the obtained control system 
compensates the stability for all speed situations, which 
substitute for parameters u.  

◯Thrusts 
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4. SIMULATIONS 
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4.1 Simulation conditions 
(3.7)  

Table 2 Requirements of simulations  
Simulation time 600[sec] 
Initial position [-30.0(m), 1.0(m), 1.0(m)]

Target point [0(m), 0(m), 0(m)] 

 
3.2 State Equation 

The state equation of ‘MR-X1’ is represented as 
  

τBxuAx +=
•

)(   (3.8)
 For LQ optimal control systems, two types of simulations 

were done. One is the optimal gain for the surge speed 0[m/s] 
(Case 1), and the other is for 0.3[m/s] (Case 2). The speed of 
0[m/s] corresponds to keeping the objective point. The speed 
0.3[m/s] is the middle speed of ‘MR-X1’ since the maximum 
speed of ‘MR-X1’ is about 0.6[m/s]. On the other hand, for 
LMIs, we simulated using the controller that derived by 
substituting speed parameters between 0[m/s] and 0.7[m/s] 
(Case 3).  
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4 .2 Simulation results 

 

◯Case 1 
 

 

Starting point 

Ending point 

 

 
Fig.6 Displacement of ‘MR-X1’ in３－D visualization

The ‘MR-X1’ does not always cruise with the constant 
speed. Therefore, when speed changing occurs, the optimal 
gain will fluctuate in each case, and if we use the control 
system that derived under one fixed speed like this simulation, 
the obtained control system cannot compensate the stability at 
other speed situations, ‘MR-X1’ tends to diverge like Fig.5 
and Fig.6. 

 
 

Fig.3 Variation in linear velocity with transition of the time

 

 

 
◯Case 3 
 

 

Starting point 

Ending point 

 

 
Fig.4 Displacement of ‘MR-X1’ in３－D visualization

The movement from the initial position to the objective 
point occurs the velocity consequently, so the control system 
of 0[m/s] cannot compensate the stability at the speed 
occurring, and ‘MR-X1’ tends to diverge like Fig.3 and Fig.4. 

 
  

Fig.7 Variation in linear velocity with transition of the time

◯
 

Case 2  

  

Starting point 

Ending point 

  

 

 

 

 

 

 
  

 
Fig.8 Displacement of ‘MR-X1’ in３－D visualizationFig.5 Variation in linear velocity with transition of the time

Initial deflections of Y-axis and Z-axis converge to the 
desired path on X-axis. The speed of ‘MR-X1’ is reduced and 
becomes 0[m/s] at the origin.  
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5. CONCLUSIONS 
 

In this paper, the mathematical model of Autonomous 
Underwater Vehicle named ‘MR-X1’, which is developing at 
JAMSTEC, was derived. We set the aim on autonomous 
tracking given path and stopping at the objective point, and for 
this aim, we applied LQ optimal control system and LMIs. In 
the result, LMIs made it possible to design a control system 
that corresponds to speed changing, and showed the 
robustness. It has more effective performance than LQ optimal 
control system.  

Now, this development is in the stage of performance test. 
We are going to confirm this simulation results with sea-trial 
of ‘MR-X1’. 
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