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Abstract: An Independent Administrative Corporation Japan Agency for Marine-Earth Science and Technology (JAMSTEC) is

developing light-and-small Autonomous Underwater Vehicles (AUV)”, named ‘MR-X1’ (Marine Robot Experimental 1),
which can cruise, investigate and observe by itself without human’s help. In this paper, we consider the motion control
problem of ‘MR-X1’ and derive a controller. Since the dynamic property of ‘MR-X1" is changed by the influence of the
speed, the mathematical model of ‘MR-X1’ becomes the nonlinear model. In order to design a controller for ‘MR-X1",
we generally apply nonlinear control theories or linear control theories with some constant speed situation. If we design a
controller by applying Linear Quadratic (LQ) optimal control theory, the obtained controller only compensates the
optimality at the designed speed situation, and does not compensate the stability at another speed situations. This paper
proposes a controller design method using Linear Matrix Inequalities (LMIs)?-®*®_ which can adapt the speed variation

of ‘MR-X1’. And examples of numerical analysis using our designed controller are shown.
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1. INTRODUCTION

Although 70 percents on the surface of the Earth is the
ocean, a lot of unexplored parts have been left. In these days,
efficient investigations of the ocean and the seabed have been
interested. However, undersea is the extreme environment that
we can’t step into easily. Therefore operating robots for taking
over from human being is desired. If such kind of robots had
been developed, we can avoid danger.

In order to realize it, an Independent Administrative
Corporation Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) is developing light-and-small
Autonomous Underwater Vehicles (AUV) to explore the ocean.
The AUV named ‘MR-X1’ (Marine Robot Experimental 1)
can cruise, investigate and observe by itself without human’s
help. In order to be able to turn in a small space and explore
efficiently, ‘MR-X1" has five thrusters. One main thruster is
for the forward and the backward motion, two thrusters are for
the horizontal motion and two thrusters are for the vertical
motion.

In this paper, the motion control problem of this AUV
‘MR-X1" is considered. In order to operate ‘MR-X1’, five
thrusters have to be controlled appropriately. Since two
vertical thrusters set up by inclining from the perpendicular, if
these vertical thrusters are rotated, ‘MR-X1’ not only moves
the vertical direction but also moves the horizontal direction.
In the case of considering the cruising ‘MR-X1’ with the
constant altitude, both vertical and horizontal thrusters have to
be controlled appropriately. The present paper considers that
‘MR-X1" is controlled to make it go straight on surge direction,
and stop at the targeting point with the constant altitude.

Since the dynamic property of ‘MR-X1" is changed by the
influence of the speed, the mathematical model of ‘MR-X1’
becomes the nonlinear model. In order to design a controller
for ‘MR-X1’, we generally apply nonlinear control theories or
linear control theories with some constant speed situation. If
the controller is designed by applying the Linear Quadratic
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(LQ) optimal control theory, the obtained controller only
compensates the optimality at the designed speed situation,
and does not compensate the stability at another speed
situations. In order to solve this problem, this paper proposes a
controller design method using Linear Matrix Inequalities
(LMlIs), which can adapt the speed variation of ‘MR-X1’. By
applying this method, we will be able to find suitable gain on
the speed variation of ‘MR-X1’. And examples of numerical
analysis using our designed controller are shown.

Fig.1 Autonomous Underwater Vehicle ‘MR-X1’

Table 1 Principal specification of ‘MR-X1’

Dimensions 2.5[m](total length) x 0.8[m](width)
% 1.2[m](height)
Weight 800[kg] (in the air)
Cruising Speed 2[kt]
Maximum Depth 4200[m]

Actuators 1. Main thruster (400W)
2. Two horizontal thrusters (150W)

3. Two vertical thrusters (150W)




ICCAS2005

June 2-5, KINTEX, Gyeonggi-Do, Korea

2. EIUATION OF MOTION FOR MR-X1

2.1 Coordinate system

In this paper, we use two coordinate systems. One is the
Earth-fixed coordinate system and the other is the Body-fixed
coordinate system. Fig.2 shows the relation between each
coordinate system. In general, linear and angular velocities are
represented by using Body-fixed coordinate system, but the
translation to the Earth-fixed coordinate system is suitable to
observe the motion of ‘MR-X1’. The matrix of coordinate
transformation between the Earth-fixed coordinate system and
the Body-fixed coordinate system becomes as follow.

M B X] i

p (roll)
q (pitch)

v (sway)

)Body 0 f xed

coordinate system
w (heav i

O
Earth U fixed

coordinate system

m]
Fig.2 Coordinate system of ‘MR-X1’

n=Japv @1

Position and angle vector with
the Earth-fixed coordinate system

n=[x229y.6¢0]

Linear and angular velocity vector
with the Body-fixed coordinate system

v=[u,w,q,v,p,r]"

x,y,z Position
¢,9,0 Angle
u,v,w Linear velocity
p.q,¥ Angular velocity
cospcosd  sin@sing+cos@cosgsin G 0
—sin g cosgcosg 0
0 0 cos¢
Jm == - e
singcos$ —cos@sing+sinJsinpcosg 0
0 0 sin ¢ tan 3
0 0 sing/cos
—singcos¢g +cosgsinJsing 0 0
cos Jsing 0 0
0 0 —sing 2.2)
cos@cosg+singsindsing 0 0
0 1 cos¢gtan @
0 0 cosg/cosd
J(n) Velocity transformation matrix

2.2 Dynamics of MR-X1

The motion of underwater vehicle is represented as the
6DOF nonlinear equation®. In general, its motion can be
treated as the motion of Rigid-body. The nonlinear equation is
represented as

Myv+Cw+Dv)+g()=1 (2.3)
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M Inertial Matrix

C(v) Matrix of Coriolis and Centripetal Terms
D(v) Damping Matrix

g(n) Matrix of Restoring Forces and Moments
T  Thrusts

2.2.1 Inertial Matrix
Inertial matrix is defined as the sum of inertial mass matrix
M,, and added inertial matrix Af, due to the inertia of the

surrounding fluid.

M=Mg,+M, (2.4)
m 0 mz 0 0 0
0 m mxg 0 0 0
} I, 0 0 0
My, = el el > (25)
0 0 0 m —mzg mXg
0 0 0 mzg I, 0
0 0 0 mxg 0 1
4, 0 00 0 0
0 4, 00 0 0
oo |0 0 4]0 0 0 »
10 0 04, 0 O (2.6)
0 0 0|0 4, O
0 0 0] 0 0 4
Position of the center of gravity of ‘MR-X1’ can be

represented as [ x.,0,z; ] 7 with the Body-fixed coordinate
system. It is assumed that the product of inertia/_ is 0,

because ‘MR-X1’ has the symmetrical configuration.
Furthermore, the added mass 4, is also 0 except diagonal

elements.

2.2.2 Matrix of Coriolis and Centripetal Terms
The matrix of coriolis and centripetal terms is defined as
the sum of the coriolis matrix of Rigid-body G,() and the

coriolis matrix in ideal fluid CW-

C)=Coy (V) +C (1) @7)
0 0 —m(xzq —w)
0 0 —m(zqq +u)
co - m(xeq —w) m(zgq+u) 0
R 0 0 m(zgr+x5p)
—mzgr  m(zgp—v) 1.r
m(xgr+v) — —mxgp -1.p
0 mzgr —m(xgr+v)
0 —m(zgp=v) m(xgp+ysq)
—m(zgr'+X6p) 1. L.p
0 —mw mu 23
mw 0 -1,q
—mu 1,4 0
0 0 —Ayyw 0 0 A,y
0 0 Au 0 —A,v 0
c,- Apw Au 0 0 Agr —Aup 2.9)
0 0 0 0 Apyw  —Agu
0 Ay = Agr | —Ayw 0 Assq
Ay 0 Ayup A —Assq 0
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2.2.3 Damping Matrix
The damping matrix of ‘MR-X1" in the fluid is represented
as

D(v)=~diag{",,Z,,M,.[|,K,,N,}

W

= diag { U ful Z,y [ wh M gy gl Dy VL K | L Nl
0 0 0 0 0 0
0z, 2,0 0 0
0 M, M,[| 0 0 0
oo o]o oo
0 0 0K 0K,
0 0 0[N 0N,
et O 0 0. 0 0
0z, w+Z,)d Z,ld 0 0 0
0 M, W+M, |q M,_|q 0 0 0
170 ‘0 : ‘ g 0.+ 0,7 0 0,7 2.10)
0 0 0 0 K,lp| 0
0 0 0 N, V+N,, r‘ 0 N, |r

The first term is the force and the moment of the first order
of the velocity, and the second term is the second order of the
velocity. These values of the matrix components are obtained
from experiments.

2.2.4 Restoring Forces and Moments
The position of the force of buoyancy of ‘MR-X1’ can be
represented as [ x,,0,z,]7 with the Body-fixed coordinate
system, so the restoring forces and moments are represented as
(00 = B)siné
— (0 —B)cosfcos¢
(z4U0 —z4B)sin@+ (x;00 —xzB)cosfcosg

8= — (00 —=B)cosOsing @10
(z400 —zzB)cosfsing
—(x;00 —x,B)cosfsin g

where

W Force of gravity, @B Force of buoyancy

2.2.5 Thrusts

In this paper, the following expression is used as the
mathematical model of thrusts of ‘MR-X1’. These
components are the function of the rotational speed of
thrusters.

[THM
Zyyy €OSQ+ Ly, COSTL

_‘Zrm// ‘ U + “XIVL‘ . ZIVL COSQ’+‘X,.VR‘ : Z'IVR cosa

~ Oy = U = Zgyy Sina+ Zpyp sina 2.12)

- ‘ZTH ‘ B + ‘ZTHR" Ur _‘ZTVL‘ Zpy sina
|Vl Zr cos@ +|zp|- Zyg Sin @+ |yry| - Ziy cosa
77‘xTH ‘ L + ‘xTHR" Yur +‘XTVL‘ “Zypy, sina "XTVR‘ “Zyyp sin a |

Opne  Thrust of the main thruster

On Thrust of the front horizontal thruster
Ume  Thrust of the rear horizontal thruster
Zpy  Thrust of the portside vertical thruster
Znr  Thrust of the starboard vertical thruster

[%730s Voo 2]~ Position of the front horizontal thruster
[X7ur> Vg >Zmr ] Position of the rear horizontal thruster
[%ry05 Yry15201] - Position of the portside vertical thruster

[Xrvs Vv Zre] - Position of the starboard vertical thruster
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where

Uy = Py ‘nTH}\/I ‘DTHM4KT 2.13)
[y = 0.846281,, +0.01724n,, ° +0.0155n,, ° (2.14)
U = 0.985821,,,, +0.02722n " +0.01577 ny° (2.15)
Zyy, =0.95576n,,, +0.02028n,,,* +0.01512n,,,” (2.16)
Z e = 0.966691,,, +0.02204n,,," +0.01526n,,,’ 2.17)

N Rotational speed of the main thruster

Ny Rotational speed of the front horizontal thruster
e Rotational speed of the rear horizontal thruster
nry;, - Rotational speed of the portside vertical thruster
nrr - Rotational speed of the starboard vertical thruster

a Declination of vertical thrusters [rad]

D, =048 Diameter of the main thruster [m]
K, =0.171 Thrust coefficient
p=1025 Fluid density [kg/m’]

These thrusters have following limitations.

=5<ny <55 =12 < npy My s Mgy s gy <12

3. DESIGNING A CONTROL SUSTEM FOR MR-X1

The aim of developing ‘MR-X1’ is to construct the
autonomous underwater vehicle that it not only follows the
given path but also stops at the objective point and keeps the
point to investigate, observe and operate. In order to realize
these, five thrusters equipped on ‘MR-X1’ have to be
controlled to be appropriate rotational speeds. In order to
know the dynamic characteristic of ‘MR-X1’, the main
thruster was only rotated firstly. Since the displacement
toward to the heave direction occurred, to keep constant
altitude, two vertical thrusters have to be rotated. However,
vertical thrusters set up by heaving the inclination from the
perpendicular. If these thrusters are rotated, ‘MR-X1’ not only
moves the vertical direction but also changes the horizontal
direction. Therefore, in the case of cruising ‘MR-X1" with the
constant altitude, these five thrusters have to be controlled
appropriately. The present paper considers the controller
design problem for ‘MR-X1’ to make it go straight on surge
direction, and stop at the objective point with the constant
altitude. It is obvious that this mechanical model of ‘MR-X1"
depends on the speed of each direction; surge, sway and heave.
In order to design a controller, we have to consider effects of
these speed variations. However, in our problem, the main
thruster is used the different way compared with other
thrusters; the main thruster is used for the straight cruising
toward the surge direction with speed u, and other thrusters are
used for holding attitude or following the path. This means
that if other thrusters are controlled appropriately from the
start, variations of speeds for vertical and horizontal directions
can be controlled to become variation sufficiently small and
we need not to consider effects of variations of speeds.
Therefore, in this paper, we design a control system to adopt
the variation of the speed for the surge direction.

3.1 Lineari ation

In order to design a control system, we divide the
mechanical model ‘MR-X1" into surge motion part and the
others and linearize the other part of the mechanical model
except the surge direction speed u. The speed u is used as a
parameter. Furthermore, the pitch angle and the pitch rate are
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neglected, because the control of the pitch angle is difficult
from the constitutional character of ‘MR-X1’. The linearized
model is shown as follows.

Matrix of coordinate transformation

1 000
T = 0100
=001 0 @1
00 0 1
Inertial matrix
m-Ay, 0 0 0
M, - 0 m—A4,, —mz; mxg 32)
0 —mzg A=A, 0
0 mxg 0 1, — Ay
Matrix of coriolis and centripetal terms
0 0 0 0
C.0) 0 0 0 (m—A4,)u 13
V)= .
g 0 0 0 0 (3-3)
0 —(m—-4,)u 0 0
Damping matrix
Z, 0 0 0
0 9 0 [
D,(v) =~
A e I (3.4)
0 N, 0 N,
Matrix of restoring forces and moments
0 0 0 0
=0 000 (3.5)
S =10 0 21 -z,B 0 :
0 0 0 0
State variable
-‘CZ[’?L»VL]T (36)
where
n,=1Z,0,¢,01, v, =[wv,p,r]
Thrusts
0 0 cosa cosa
-1 -1 —sina sina
7, = . . .
o =z |zmml —lzmalsing =|yn|cosa |z sina +]yp|cos e
—‘xm ‘ ‘xTHR‘ ‘xm‘sina —‘xr,,k‘sina
0.84628 0 0 0
0 0.98582 0 0 37
0 0 0.95576 0 @7
0 0 0 0.96669
3.2 State E[ uation
The state equation of ‘MR-X1" is represented as
x=A(u)x+ BT (3.8)
x=[n,,v,] =[Z.0.¢,0,w,v, p, .
2. L] .. ¢€0 .. p _] State variable
X = [ﬂ/_»vL] - Za >¢ (ﬂ»WVP» ]
T =[Ny Mgy My s iy ] Input
{ G, @+ Dy —M, g, () (3.9)
Jo () 044
{ } (3.10)
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3.3 Designing a control system

In this section, the control system is designed to control
‘MR-X1’ moving toward the objective point. The control
system is firstly designed using the linear quadratic (LQ)
optimal control. Generally, in order to design the LQ optimal
control system for linear systems, it is necessary to solve the
Algebraic Riccati equation by using constant matrices A and B
in the state equation. Since the Riccati equation is solved
easily by using some computer softwares, the state feedback
control system can be easily obtained. In order to apply the
LQ control theory for ‘MR-X1’, we have to fix the cruising
speed u. Therefore, the optimality of the obtained control
system is only compensated about the one speed. However,
the obtained control system does not compensate the stability
in other speed situations.

In order to compensate the stability, we propose the new
design method by using the LMI, which correspond to the
Riccati inequality. The algorithm to solve the LMI has a
property that can solve some number of LMIs simultaneously.
By applying this property, it is considered that we can obtain
the solution that satisfies the LMI condition under several
speeds. The proposed strategy to design the control system is
represented as follow.

The LMI that corresponds to Riccati equation in LQ
optimal control on state equation (3.8) is represented as
rc’

<0 (i=0,...,m)

|:A(u,.)J+ CA(u,)" - BB' . (3.11)

ct

>0

The constant matrix C corresponds to the weighting matrix
in LQ optimal control. The speed parameter u including LMI
is given appropriately. By applying the algorithm to solve the
LMIs, we can obtain one solution X. In this case, the control

input 7 isrepresented as

T=-B"1'x (3.12)

Note that the solution X satisfies LMI conditions on all
speed parameters. This means that the obtained control system
compensates the stability for all speed situations, which

substitute for parameters u.

4. SIMULATIONS
4.1 Simulation conditions

Table 2 Requirements of simulations
600[sec]
[-30.0(m), 1.0(m), 1.0(m)]
[0(m), O(m), O(m)]

Simulation time
Initial position
Target point

For LQ optimal control systems, two types of simulations
were done. One is the optimal gain for the surge speed O[m/s]
(Case 1), and the other is for 0.3[m/s] (Case 2). The speed of
O[m/s] corresponds to keeping the objective point. The speed
0.3[m/s] is the middle speed of ‘MR-X1’ since the maximum
speed of ‘MR-X1" is about 0.6[m/s]. On the other hand, for
LMIs, we simulated using the controller that derived by
substituting speed parameters between O[m/s] and 0.7[m/s]
(Case 3).
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4.2 Simulation results

Case 1

i TS
1 [
....,r.._.,! ";"';'_l'\"_'""-': =

Fig.6 Displacement of ‘MR-X1’in D visualization

The ‘MR-X1’ does not always cruise with the constant
speed. Therefore, when speed changing occurs, the optimal
gain will fluctuate in each case, and if we use the control
system that derived under one fixed speed like this simulation,
the obtained control system cannot compensate the stability at
other speed situations, ‘MR-X1’ tends to diverge like Fig.5
and Fig.6.

Case 3

Fig4 Displacement of ‘MR-X1’in D visualization

The movement from the initial position to the objective
point occurs the velocity consequently, so the control system
of O[m/s] cannot compensate the stability at the speed
occurring, and ‘MR-X1" tends to diverge like Fig.3 and Fig.4.

Case 2

Fig.8 Displacement of ‘MR-X1"in D visualization

Fig.5 Variation in linear velocity with transition of the time
Initial deflections of Y-axis and Z-axis converge to the
desired path on X-axis. The speed of ‘MR-X1" is reduced and

becomes 0[m/s] at the origin.
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5. CONCLUSIONS

In this paper, the mathematical model of Autonomous
Underwater Vehicle named ‘MR-X1’, which is developing at
JAMSTEC, was derived. We set the aim on autonomous
tracking given path and stopping at the objective point, and for
this aim, we applied LQ optimal control system and LMIs. In
the result, LMIs made it possible to design a control system
that corresponds to speed changing, and showed the
robustness. It has more effective performance than LQ optimal
control system.

Now, this development is in the stage of performance test.
We are going to confirm this simulation results with sea-trial
of ‘MR-X1".
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