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Abstract

The rotor blade is modeled using a composite box beam with arbitrary wall. The active
constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active
and passive damping. A finite element model, based on a hybrid displacement theory, is used in the
structural analysis. The theory is capable of accurately capturing the transverse shear effects in the
composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced
order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller
is designed based on the reduced order model and the available measurement output. However, the LQG
control system fails to stabilize the perturbed system although it shows good control performance at the
nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery
(LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor
aeromechanical stability and suppresses rotor response over large variations in rotating speed by

increasing lead-lag modal damping in the coupled rotor-body system.
I. INTRODUCTION

Increase of lead-lag damping in rotor blades has been investigated for many years to improve
helicopter aeroelastical and aeromechanical stability. Recent research has shown that improvements in
helicopter vibration reduction, aeroelastic stability and aeromechanical stability can be achieved by using
smart. materials and active control techniques [1]. The use of segmented active constrained layer (SCL)
damping treatment for passive augmentation of ground and air resonance stability was investigated by
Chattopadhyay et all[2]. The study indicates that significant improvement in lead lag damping can be
achieved through the use of this type of damping treatment.

The use of active constrained layer (ACL) damping treatment has been investigated by many
researchers in the context of vibration control. The piezoelectric layers have sensing and control
capabilities that actively tune the shear of the viscoelastic layer based on the structural response.
Considerable amount of research has been performed in modeling ACL, as summarized by Ro and Baz {3].
It is also well known that segmentation of the constrained layers provides an effective means of
increasing passive damping in low frequency vibration modes by increasing the number of high shear
regions{4]. A more comprehensive approach to model sparse segmented ACL damping treatment on
composite plates of arbitrary thickness was developed by Chattopadhyay et al. [5]. The rotary wing
applications can be found in be [6]. In Ref. 2, the segmented ACL configuration was used to investigate
improvement in passive inplane damping in rotor blades; no active control technique was employed. An
active control method based on the linear quadratic Gaussian (LQG) technique was developed in Ref. 7.
To deal with the time-variant characteristics of the dynamic model due to rotor rotation, a transformation
matrix was introduced in that work. However, although the proposed controller was very effective in
improving aeromechanical stability, the model reduction and the associated robustness issues were not
addressed.

The objective of this paper is to investigate the robustness of the reduced order controller by
taking into account some of the associated uncertainties, based on Ref. [7], for a smart rotor blade built
around a composite box beam with segmented active constrained layers. An air resonance model is used
to investigate the coupled rotor-body stability. Both model reduction and robust stability, which are
important factors for real-time implementation, are addressed. A balanced model reduction method using
Hankel singular values is used for the model reduction. A LQG controller is then designed based on the
reduced. order model. As shown numerically, the controller is capable of stabilizing the unstable open loop
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system at nominal operating condition. However, the LQG controller based on the reduced order model

does not exhibit robust stability under model uncertainties caused by the variation in the rotor rotating
speed. To improve the robust stability of the LQG design, the loop transfer recovery (LTR) technique is
introduced. Through numerical study, it is shown that the proposed controller effectively stabilizes the
perturbed systems as well as the nominal system.

II. MODELING OF SMART COMPOSITE ROTOR BLADES

The principal rotor load-carrying member is represented by a composite box beam of arbitrary
wall thickness as shown in Figure 1. A hybrid displacement theory developed by Chattopadhyay et al. [5]
is used to model surface honded ACL on a composite plate.

piszosleciic
Cattuator

b) Composite box beam
Figure 1 Configuration of composite box beam with ACLs

The air resonance model is considered. Only rigid body pitch and roll rotation degrees of freedom
are taken into account in this model. A fundamental flap modal displacement and a fundamental lead-lag
modal displacement are considered. The blade pitch degree of freedom is not included in the analysis.
ACLs are bonded on the top and bottom surfaces of the composite box beam, which represent the
load-carrying member of the rotor blade. It is assumed that the blade mass is distributed uniformly along
the blade span and the plat form is rectangular. It is also assumed that there is no geometric twist. It is
assumed that there is no structural coupling between flap and lead-lag motions. The individual blade flap
and lead-lag motions are combined together and are transferred to the nonrotating coordinate system
through multiblade transformation. The aerodynamic forces are calculated based on quasi-steady lifting
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line theory, combined with a dynamic inflow model.

The finite element model consists of 528 degrees of freedom, which results in 1056-th order open
loop model. In' order to reduce the full model for real time control problem, a 14-th order reduced order
model is derived. By combining equations of structural dynamics and air resonance model, the equation of
motion becomes the linear time-variant system in the state space form

(1) = Ax(t) + F()v(t)
¥ () =Cx(1)

where x(8, () and (¥ are the state, input and output vectors, respectively, and A and C are the
system and output matrices, respectively. The control matrix F(# is periodic, that is F(H= F(t+ )
with period 7 =27/, due to the rotating nature of the blade with rotational speed Q. It is assumed

that only two lead-lag angles are measured.
HI. ROBUST CONTROLLER DESIGN

Using the transformation matrix defined as

cosQt —sinQi | 2)
sinQt  cosQ

T@:[

the time varying system can be transformed to the time-invariant design problem by using
(= T(Hu(f). The detailed trnaformation procedure is shown in reference 7.

A balanced model reduction method based on Hankel singular values is used in order to obtain the
reduced order model. The Hankel singular value is a measure of the significance of the associated mode
in the dynamic model. In order to use the balanced model reduction, a projection method is applied. The
method decomposes the minimal realization model G(s) to stable and antistable part as follows [10]

G(s) =[G(9)]. +[G(s)). 3

where [G($)]- and [G(s)]; are the unstable and stable subset of the full model, respectively. The
unstable subset should be included in the reduced order model. A balanced model reduction procedure is

applied to the stable part [G(s)]. . After obtaining the reduced order model [G($)],+ of [G(9)]4, a
reduced order model [G(s)],, of [G(s)] can be obtained as follows

G(s),, =[G(s)]. +[G()],s )
The state space equation of reduced order model is derived as follows

X, (¢) = 4,x, () + B,u(t) (5)
y®)=C,x, (1)

and the performance index can be stated as
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Ty = Eflim [ [, (00, %, )+ pu (w0} ®

where x, is the reduced state and A,, B, and are C,, the state, input and output matrices of the
reduced order model, respectively. The control problem is to find the output feedback control input u(t) in
terms of output y(t) so as to minimize the performance index, J, where @, is symmetric and positive

semi-definite and p is a positive scalar. In this research, a transformation matrix is used to transform
the time-variant system to the time-invariant system, the equation of LQG controller based on the
reduced order model has the following form

Ea(0) = 4,3, (04 Bu(t) + H,[y(0)~C, 3, (1] o
u(t)=~K,5,(0)

where *» is the estimated value of the reduced state x,. The control gain matrix K, and filter gain
matrix H,, are determined from the linear quadratic control theory and the Kalman filter theory,

respectively. The matrices K,, and H,, are obtained from two algebraic Riccati equations; control
algebraic Riccati equation and filter algebraic Riccati equation (8, 9]

Numerical investigation shows that the LQG controller stabilizes the unstable lead-lag modes at
nominal operating condition. However, it fails to guarantee robust stability under model uncertainties. To
ensure robust stability, the loop transfer recovery technique is applied by using the method of Doyle and
Stein {8]. The loop transfer function of the linear quadratic controller

G,(s)=K,(sI-4,)"B, ®)

is recovered through the loop transfer recovery procedure. The loop transfer recovery property means that
for stabilizable , observable minimum phase plants satisfying

GL (s) = Cm (S]“Am)_le is nonsingular in Re s=0 9)

the loop gain transfer matrix in a full-state feedback design, equation (8), is recovered in a full-order

state estimate feedback design under a certain limiting operation.

IV. RESULTS AND DISCUSSIONS

The dimensions of the box beam are such that the length of 6m, width of 0.17m, and height of
0.043m. All walls are assumed to have the same stacking sequence. In the ACL configuration, the
piezoelectric layer thickness is 1.96mm and the viscoelastic layer thickness is 0.98 mm. The
aeromechanical behavior of a rotor blade built around the composite box beam, with one pair of top and
bottom surface bonded ACLs, is studied. The coupled rotor-body system poles for the seven system
modes are as follows: lead-lag regressive mode (LR), lead-lag advancing mode (LA), flap regressive mode
(FR), flap advancing mode (FA), gyroscopic mode (GS), dynamic inflow mode (DI) and zero root mode.
To perform model reduction, the Hankel singular values are calculated as shown in Figure 2. The first
four singular values contributed by the lead-lag states are dominant compared with the other singular
values.
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Figure 2 Hankel singular values

Actually, the lead-lag modes are more important since these modes often make the system
unstable. Based on the obtained singular values, a 4th order reduced order model is derived as follows.

~0.610 ~0.140 0402 0902
A= 0960 0495 -0.996 -0.279
"|-0.604 0692 0575 0.009

-0.129 1160 0.753 -0.446

-7.130e—-6 —1.764e—-4
1.831e—4 4941e-5

"1 -4.765¢-5"" 1.120e— 4
~1.340e—4  5.097¢-5

_|-0.106 0479 -0.724 0.777
| 059 0502 0.723  0.382

m

A LQG controller is designed based on the reduced order model. The reduced order controller
stabilizes the full model as well as the reduced order model. However, the LQG controller fails to stabilize
the perturbed system when the rotating speed changes. In order to improve the robust stability, a loop
transfer recovery procedure is applied to the LQG design and it is represented in Figure 3. .When the
parameter q, weighting for fictitious noise in Doyle and Stein’s loop transfer recovery procedure, becomes
large, the designed LQG/LTR controller almost recovers the loop transfer characteristics of the state
feedback control system. As is well known, the state feedback controller based on the LQ design
guarantees the robust stability under model uncertainties.
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Figure 3 LQG/LTR singular values with respect to weight g

The system poles of open loop, passive control, LQG and LQG/LTR systems at nominal rotating
speed are shown in Figure 4. As shown in Figure 4, the open loop system is unstable without sufficient
rotor mechanical lead-lag damping. The unstable modes are the LR and LA modes. It is well known that
lead-lag motion is associated with lower modal damping due to less aerodynamic loads. With the
application of active control methods to the coupled system, the closed loop system is stabilized. The
lead-lag damping ratios of the closed loop system are about three times larger than the corresponding
passive system at nominal operating condition. To examine the robustness of the proposed control scheme,
the poles of the open loop and closed loop systems at other operating speeds are calculated. The LQG and
LQG/LTR control systems show almost similar performance at nominal operating condition. As the rotor
rotating speed decreases, the LQG controller does not guarantee stability any longer. However, the
LQG/LTR controller stabilizes the perturbed system by locating all closed loop poles in the left half plane
as shown in Figure 4. While the relative stability of the lead-lag regressive mode becomes worse as the
rotating speed increases, it is shown that the closed loop system remains stable under (25 % variations in
speed.
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Figures 5 shows the impulse response of the closed loop system at the perturbed operating
points. The LQG/LTR control system is sufficient to suppress the unstable lead-lag vibrations over the
wide operating range, while the LQG controller fails to stabilize the body coupled instability at lower
rotating speed. In order to examine the required control energy, the electric voltages for four pairs of
actuators are also shown in Figures 6 and 7. The 3rd and 4th control inputs are the negative values of
the 1st and 2nd control inputs, respectively, because of the geometric symmetry of the rotor and the
actuator. The control inputs in Figure 6, calculated based on the LQG control scheme, show increase in
control energy due to the instability of the control system as the rotating speed decreases. However, the
control inputs in Figure 7, calculated based on the LQG/LTR control scheme, converge to zero
asymptotically and the magnitudes are smaller than the LQG control systems.

V. CONCLUSIONS

Based on the Hankel singular value analysis, a reduced order model is derived and a LQG
controller is designed based on that model. To improve the robust stability of the LQG design under
model uncertainties, caused by the variation in rotor rotating speed, the loop transfer recovery (LTR)
technique is introduced. Numerical results indicate that the surface bonded ACL actuators with LQG/LTR
control significantly increase rotor lead-lag regressive and advancing modal damping in the coupled
rotor-body system over a wide range of rotating speed. The following important observations are made

from the present study.

(1) The segmented constrained layers, bonded on the top and bottom surfaces of the rotor blade,
significantly improve the damping of the lead-lag modes in the air resonance model.

(2) The combined use of the Hankel singular value analysis and robust control method, shows that the

14th order control system can be reduced to the 4th order while preserving the control performance of

the 14th order control system. '

The LQG/LTR design based on the reduced order model is efficient in improving the robust stability

of aeromecanical rotor response over a wide range of rotating speed.
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