• Title/Summary/Keyword: Quadratic Forms

Search Result 103, Processing Time 0.023 seconds

The Implementation of the structure and algorithm of Fuzzy Self-organizing Neural Networks(FSONN) based on FNN (FNN에 기초한 Fuzzy Self-organizing Neural Network(FSONN)의 구조와 알고리즘의 구현)

  • 김동원;박병준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.114-117
    • /
    • 2000
  • In this paper, Fuzzy Self-organizing Neural Networks(FSONN) based on Fuzzy Neural Networks(FNN) is proposed to overcome some problems, such as the conflict between ovefitting and good generation, and low reliability. The proposed FSONN consists of FNN and SONN. Here, FNN is used as the premise part of FSONN and SONN is the consequnt part of FSONN. The FUN plays the preceding role of FSONN. For the fuzzy reasoning and learning method in FNN, Simplified fuzzy reasoning and backpropagation learning rule are utilized. The number of layers and the number of nodes in each layers of SONN that is based on the GMDH method are not predetermined, unlike in the case of the popular multi layer perceptron structure and can be generated. Also the partial descriptions of nodes can use various forms such as linear, modified quadratic, cubic, high-order polynomial and so on. In this paper, the optimal design procedure of the proposed FSONN is shown in each step and performance index related to approximation and generalization capabilities of model is evaluated and also discussed.

  • PDF

A Vertical Line Following Guidance Law Design (수직면 직선추종유도법칙 설계)

  • Whang, Ick-Ho;Cho, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1309-1313
    • /
    • 2010
  • In this paper, we propose a novel guidance law for controlling an UAV(Unmanned Air-Vehicle) to follow a reference line in vertical plane. A kinematics model representing the relative motion of the UAV to the reference line is derived. And then LQR(Linear Quadratic Regulator) theory is applied to the model to derive the VLFG(Vertical Line Following Guidance) law. The resultant guidance law forms a gain-scheduling controller scheduled by a simple parameter $\sigma$ which is a function of the UAV's velocity, axial acceleration, gravity, and the slope of the reference line. Also derived is a stability condition for the $\sigma$ variation based on Lyapunov theory. Simulation results show that the proposed guidance law can be applied effectively to UAV guidance algorithm design.

The Relation between the Sectional Form of the Shio and the Wave Resistance (船體斷面形狀(船體斷面形狀)과 조파저항(造波抵抗)과의 관계(關係))

  • Chung, Jung-Han
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 1975
  • This paper was intended to compare the relationship between sectional form of ships and wave making resistance by calculating the resistance value practically rather than theoretically. As the sectional form of ships, four types of quadratic ship forms was introduced and he wave making resistance was calculated by the Slender Ship Theory. The main result obtained in this paper is the following. The relationship between the displacement distribution of draught direction in the given sectional form of ships and the resistance value was shown. It was supposed that the resistance value will decrease with the increase of the displacement distribution of draught direction and it was proved by the numerical value.

  • PDF

THE NUMBER OF REPRESENTATIONS OF A POSITIVE INTEGER BY TRIANGULAR, SQUARE AND DECAGONAL NUMBERS

  • Isnaini, Uha;Melham, Ray;Toh, Pee Choon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1143-1157
    • /
    • 2019
  • Let $T_aD_b(n)$ and $T_aD^{\prime}_b(n)$ denote respectively the number of representations of a positive integer n by $a(x^2-x)/2+b(4y^2-3y)$ and $a(x^2-x)/2+b(4y^2-y)$. Similarly, let $S_aD_b(n)$ and $S_aD^{\prime}_b(n)$ denote respectively the number of representations of n by $ax^2+b(4y^2-3y)$ and $ax^2+b(4y^2-y)$. In this paper, we prove 162 formulas for these functions.

ALMOST UNIVERSAL SUMS OF TRIANGULAR NUMBERS WITH ONE EXCEPTION

  • Jangwon Ju
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.931-957
    • /
    • 2023
  • For an arbitrary integer x, an integer of the form $$T(x)={\frac{x^2+x}{2}}$$ is called a triangular number. Let α1, ... , αk be positive integers. A sum ${\Delta}_{{\alpha}_1,{\ldots},{\alpha}_k}(x_1,\,{\ldots},\,x_k)=\{\alpha}_1T(x_1)+\,{\cdots}\,+{\alpha}_kT(x_k)$ of triangular numbers is said to be almost universal with one exception if the Diophantine equation ${\Delta}_{{\alpha}_1,{\ldots},{\alpha}_k}(x_1,\,{\ldots},\,x_k)=n$ has an integer solution (x1, ... , xk) ∊ ℤk for any nonnegative integer n except a single one. In this article, we classify all almost universal sums of triangular numbers with one exception. Furthermore, we provide an effective criterion on almost universality with one exception of an arbitrary sum of triangular numbers, which is a generalization of "15-theorem" of Conway, Miller, and Schneeberger.

Genetic Optimization of Fuzzy C-Means Clustering-Based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.466-472
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based fuzzy neural networks (FCM-FNN) and the optimization of the network is carried out by means of hierarchal fair competition-based parallel genetic algorithm (HFCPGA). FCM-FNN is the extended architecture of Radial Basis Function Neural Network (RBFNN). FCM algorithm is used to determine centers and widths of RBFs. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM-FNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Since the performance of FCM-FNN is affected by some parameters of FCM-FNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the HFCPGA which is a kind of multipopulation-based parallel genetic algorithms(PGA) is exploited to carry out the structural optimization of FCM-FNN. Moreover the HFCPGA is taken into consideration to avoid a premature convergence related to the optimization problems. The proposed model is demonstrated with the use of two representative numerical examples.

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

A Study on Hull-Form Design for Ships Operated at Two Speeds (두 가지 속도에서 운항하는 선박의 형상설계에 관한 연구)

  • Kim, Tae Hoon;Choi, Hee Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.467-474
    • /
    • 2018
  • The purpose of this study is related to automatic hull-form design for ships operating at two speeds. Research was conducted using a series 60 ($C_B=0.6$) ship as a target, which has the most basic ship hull-form. Hull-form development was pursued from the viewpoint of improving resistance performance. In particular, automatic hull-form design for a ship was performed to improve wave resistance, which is closely related to hull-forms. For this purpose, we developed automatic hull-form design software for ships by combining an optimization technique, resistance prediction technique and hull-form modification technique, appling the software developed to a target ship. A sequential quadratic programming method was used for optimization, and a potential-based panel method was used to predict resistance performance. A Gaussian-type modification function was developed and applied to change the ship hull-form. The software developed was used to design a target ship operating at two different speeds, and the performance of the resulting optimized hull was compared with the results of the original hull. In order to verify the validity of the program developed, experimental results obtained in model tests were compared with calculated values by numerical analysis.

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.

Applying Hedonic Price Model to Analyzing Non-market Characteristic of Personal Computer (헤도닉 가격모형을 이용한 개인컴퓨터의 비시장 속성에 대한 가치추정)

  • 신승식;곽승준;유승훈
    • Journal of Korea Technology Innovation Society
    • /
    • v.3 no.3
    • /
    • pp.85-101
    • /
    • 2000
  • The purpose of this study is to test whether prices of personal computers reflect their varying degrees of non-marketable characteristics including after-sales service. This purpose is carried out using the hedonic price model. In this paper, we estimated 74 functional forms of hedonic price model using the quadratic Box-Cox transformation function and selected one based on the three criteria: expected signs, the statistical significance of estimated coefficients, and goodness of fit in terms of root-mean-square-percentage-error. In this study, we found hat as the after-sales service level increases the price of the personal computer increases. This result is consistent with the hypothesis that the less after-sales service offered with a personal computer, the less consumers are willing to pay for the personal computer, when all else remain constant. This finding shows that since the market works indirectly to influence pricing, the need to rely on consumer protection legislation to guarantee after-sales service is lessened. This study also found that after-sales service supported by each personal computer producer is not a free service, thus produces have a profit incentive for providing after-sales service.

  • PDF