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ALMOST UNIVERSAL SUMS OF TRIANGULAR NUMBERS

WITH ONE EXCEPTION

Jangwon Ju

Abstract. For an arbitrary integer x, an integer of the form T pxq“ x2`x
2

is called a triangular number. Let α1, . . . , αk be positive integers. A sum

∆α1,...,αk px1, . . . , xkq “ α1T px1q ` ¨ ¨ ¨ ` αkT pxkq of triangular numbers
is said to be almost universal with one exception if the Diophantine equa-

tion ∆α1,...,αk px1, . . . , xkq “ n has an integer solution px1, . . . , xkq P Zk

for any nonnegative integer n except a single one. In this article, we
classify all almost universal sums of triangular numbers with one excep-

tion. Furthermore, we provide an effective criterion on almost universality

with one exception of an arbitrary sum of triangular numbers, which is a
generalization of “15-theorem” of Conway, Miller, and Schneeberger.

1. Introduction

In 1770, Lagrange proved that every nonnegative integer can be written as
a sum of at most four squares of integers. Motivated by Lagrange’s four-square
theorem, Ramanujan provided a list of 55 candidates of diagonal quaternary
integral quadratic forms that represent all nonnegative integers (for details,
see [15]). Dickson pointed out that the diagonal quaternary quadratic form
x2 ` 2y2 ` 5z2 ` 5t2 in Ramanujan’s list doesn’t represent the integer 15, and
confirmed that Ramanujan’s assertion is correct for all the other 54 quadratic
forms (for details, see [5]).

Ramanujan’s assertion was generalized to find all universal quaternary qua-
dratic forms, i.e., those representing all nonnegative integers. This was com-
pletely solved by Conway, Miller, and Schneeberger in 1993. They proved the
so called “15-theorem”, which states that a positive definite integral quadratic
form is universal if and only if it represents the integers

1, 2, 3, 5, 6, 7, 10, 14, and 15,

irrespective of its rank. Moreover, they provided a complete list of 204 qua-
ternary quadratic forms with this property. Recently, Bhargava provided an
elegant proof of the 15-theorem in [1].
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As a natural generalization of the 15-theorem, Bhargava and Hanke [2]
proved the so-called “290-theorem”, which states that every positive definite
integer-valued quadratic form is universal if and only if it represents the integers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,
30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290.

Here a quadratic form fpx1, x2, . . . , xnq “
ř

1ďi,jďn aijxixj paij “ ajiq is called
integral if aij P Z for any i, j, and is called integer-valued if aii P Z and aij`aji P

Z for any i, j. Moreover, they provided a complete list of 6436 such forms in
four variables.

A next natural generalization of Ramanujan’s assertion is to classify all qua-
dratic forms representing all nonnegative integers with finitely many exceptions.
A quadratic form with this property is said to be almost universal. At first, by
using an escalation method, in [6] Halmos provided a list of 88 candidates of
almost universal diagonal quaternary quadratic forms with one exception. It
was pointed out that diagonal quaternary quadratic forms x2 ` y2 ` 2z2 ` 22t2

and x2 ` 2y2 ` 4z2 ` 22t2 in Halmos’s list don’t represent two integers 14
and 78. Halmos proved that 85 of those indeed represent all nonnegative in-
tegers except a single one. Moreover, he conjectured that the remaining form
x2 ` 2y2 ` 7z2 ` 13t2 represents all nonnegative integers except 5, and it was
proved by Pall in [14].

In 2009, Bochnak and Oh [3] provided an effective characterization for de-
ciding whether a positive definite integral quaternary quadratic form represents
all nonnegative integers with finitely many exceptions. It can be considered as
the final solution to the problem first addressed by Ramanujan in [15].

In this paper, we investigate representations by sums of triangular numbers.
The n-th triangular number is the number of dots in the triangular arrangement
with n dots on a side. More precisely, the n-th triangular number is defined by

T pnq “
n2 ` n

2

for any nonnegative integer n. Note that tT pxq : x P NYt0uu “ tT pxq : x P Zu.
For positive integers α1, . . . , αk, we say a sum

∆α1,...,αk
px1, . . . , xkq :“ α1T px1q ` ¨ ¨ ¨ ` αkT pxkq

of triangular numbers represents a nonnegative integer n if the Diophantine
equation

∆α1,...,αk
px1, . . . , xkq “ n

has an integer solution px1, . . . , xkq P Zk. Furthermore, a sum

∆α1,...,αk
px1, . . . , xkq psimply, ∆α1,...,αk

q

of triangular numbers is called universal if it represents all nonnegative integers.
The famous Gauss’ triangular theorem states that every positive integer can

be expressed as a sum of three triangular numbers which was first asserted by
Fermat in 1638. In 1862, Liouville proved that for positive integers a, b, and
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c pa ď b ď cq, a sum ∆a,b,c of triangular numbers is universal if and only if
pa, b, cq is one of the following triples:

p1, 1, 1q, p1, 1, 2q, p1, 1, 4q, p1, 1, 5q, p1, 2, 2q, p1, 2, 3q, and p1, 2, 4q,

which is a generalization of Gauss’ triangular theorem.
In 2013, Bosma and Kane proved the triangular theorem of eight which states

that for positive integers α1, . . . , αk, an arbitrary sum ∆α1,...,αk
of triangular

numbers is universal if and only if it represents 1, 2, 4, 5, and 8 (for details, see
[4]). This might be considered as a natural generalization of the “15-theorem”
of Conway, Miller, and Schneeberger.

For positive integers α1, . . . , αk, a sum ∆α1,...,αk
of triangular numbers is

called almost universal if it represents all nonnegative integers with finitely
many exceptions. Especially, if a sum of triangular numbers represents all
nonnegative integers except a single one, then it is said to be almost universal
with one exception. Furthermore, it is called proper if any proper partial sum
of it doesn’t represent at least two nonnegative integers.

We know that if a sum ∆α1,...,αk
of triangular numbers is almost universal

with one exception m, then m is inside t1, 2, 4, 5, 8u by the triangular theorem
of eight. By using an escalation method, we give a complete list of candidates
of 490 proper almost universal sums of triangular numbers with one exception,
actually, the numbers of ternary, quaternary, and quinary sums among them are
1, 235, and 254, respectively. We classify all almost universal sums of triangular
numbers with one exception 1, 2, 4, 5, and 8, respectively. Furthermore, we
provide an effective criterion on almost universality with one exception of an
arbitrary sum ∆α1,...,αk

of triangular numbers. This might be considered as a
natural generalization of the 15-theorem of Conway, Miller, and Schneeberger.

Theorem 1.1. A sum of triangular numbers is almost universal with one
exception 1 if and only if it represents the integers

2, 3, 4, 8, 10, 16, and 19

and doesn’t represent 1. There are exactly 29 proper almost universal sums of
triangular numbers with one exception 1, actually, there are 11 quaternary and
18 quinary ones psee Table 1q.

Theorem 1.2. A sum of triangular numbers is almost universal with one
exception 4 if and only if it represents the integers

1, 2, 11, 14, 19, 25, 29, 46, and 50

and doesn’t represent 4. There are exactly 138 proper almost universal sums
of triangular numbers with one exception 4, actually, there are 127 quaternary
and 11 quinary ones psee Table 2q.

Theorem 1.3. A sum of triangular numbers is almost universal with one
exception 5 if and only if it represents the integers

1, 2, 8, 14, 26, 40, 41, 47, 59, and 71
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and doesn’t represent 5. There are exactly 171 proper almost universal sums of
triangular numbers with one exception 5, actually, there are 56 quaternary and
115 quinary ones psee Table 10q.

Theorem 1.4. A sum of triangular numbers is almost universal with one
exception 8 if and only if it represents the integers

1, 2, 5, 17, and 89

and doesn’t represent 8. There are exactly 80 proper almost universal sums of
triangular numbers with one exception 8, actually, there are 7 quaternary and
73 quinary ones psee Table 13q.

Note that the sum ∆1,4,5 of triangular numbers is the unique candidate of
ternary almost universal sums of triangular numbers with one exception (see
Section 7). In [10], Kane proved that ∆1,4,5 represents all positive odd integers
under the assuming GRH for L-functions of weight 2 newforms. We conjecture
that it represents all nonnegative integers except 2. Actually, we checked that
∆1,4,5 represents all nonnegative integers up to 107 except 2.

Conjecture 1.5. The ternary sum ∆1,4,5 of triangular numbers is almost uni-
versal with one exception 2.

Assume that Conjecture 1.5 is true. Then we have the following theorem.

Theorem 1.6. If Conjecture 1.5 is true, then a sum of triangular numbers is
almost universal with one exception 2 if and only if it represents the integers

1, 4, 5, 7, 8, 9, 11, 16, 17, 20, 29, and 35

and doesn’t represent 2. There are exactly 72 proper almost universal sums of
triangular numbers with one exception 2, actually, there are unique ternary, 34
quaternary, and 37 quinary ones psee Table 15q.

The complete list of proper almost universal sums of triangular numbers
with one exception is given in Tables 1, 2, 10, 13, and 15. In the above tables,
each sum of triangular numbers having a dagger mark with the last coefficient
is almost universal with one exception that is not proper.

Let fpx1, x2, . . . , xkq “
ř

1ďi,jďk aijxixj paij “ aji P Zq be a positive definite
integral quadratic form. The corresponding integral symmetric matrix of f is
defined by Mf “ paijq and any matrix isometric to it is denoted by Mf also.
For a diagonal quadratic form fpx1, x2, . . . , xkq “ a1x

2
1 ` a2x

2
2 ` ¨ ¨ ¨ ` akx

2
k, we

simply write

Mf “ xa1, a2, . . . , aky.

For an integer n, we say n is represented by f if the equation fpx1, x2, . . . , xkq “

n has an integer solution px1, x2, . . . , xkq P Zk, which is denoted by n ÝÑ f .
The genus of f , denoted by genpfq, is the set of all quadratic forms that are
isometric to f over the p-adic integer ring Zp for any prime p. The number of
isometry classes in genpfq is called the class number of f and denoted by hpfq.
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A good introduction to the theory of quadratic forms may be found in [13],
and we adopt the notations and terminologies from this book.

2. General tools

For positive integers α1, . . . , αk, we define

∆α1,...,αk
px1, . . . , xkq “ α1T px1q ` ¨ ¨ ¨ ` αkT pxkq.

Recall that a sum

∆α1,...,αk
px1, . . . , xkq psimply, ∆α1,...,αk

q

of triangular numbers is called almost universal if it represents all nonnegative
integers with finitely many exceptions. In particular, if the number of excep-
tions is one, then it is said to be almost universal with one exception, which is
equivalent to the existence of an integer solution px1, . . . , xkq P Zk of

α1p2x1 ` 1q2 ` ¨ ¨ ¨ ` αkp2xk ` 1q2 “ 8n ` α1 ` ¨ ¨ ¨ ` αk

for any nonnegative integer n except a single one. Furthermore, this is equiva-
lent to the existence of an integer solution px1, . . . , xkq P Zk of

(1) α1x
2
1 ` ¨ ¨ ¨ ` αkx

2
k “ 8n ` α1 ` ¨ ¨ ¨ ` αk with x1 ¨ ¨ ¨xk ” 1 pmod 2q

for any nonnegative integer n except a single one.
Now, we introduce our strategy to prove that a sum ∆α1,...,αk

pk ě 4q of tri-
angular numbers is almost universal with one exception. At first, take a suitable
ternary section ∆αi1

,αi2
,αi3

of ∆α1,...,αk
, where tαi1 , αi2 , αi3u Ă tα1, . . . , αku.

Without loss of generality, we may assume that ∆αi1 ,αi2 ,αi3
“ ∆α1,α2,α3

. We
consider the equation

(2) α1x
2
1 ` α2x

2
2 ` α3x

2
3 “ 8n ` α1 ` α2 ` α3 with x1x2x3 ” 1 pmod 2q.

Note that Equation (2) corresponds to the representations by a ternary qua-
dratic form with congruence conditions. Since there are some methods for
determining the existence of representations of integers by a ternary quadratic
form, we try to find a suitable method on reducing Equation (2) to the rep-
resentations of a ternary quadratic form, denoted by fpx1, x2, x3q, without
congruence conditions. To explain our method, for example, assume that
α1 ” α2 ” 0 pmod 2q and α3 ” 1 pmod 2q. Then Equation (2) has an in-
teger solution if

(3) fpx1, x2, x3q “ α1px3 ´ 2x1q2 `α2px3 ´ 2x2q2 `α3x
2
3 “ 8n`α1 `α2 `α3

has an integer solution. Hence, in this case, the problem can be reduced to the
representations of a ternary quadratic form without congruence conditions.

After that for sufficiently large n, we find suitable a4, . . . , ak P Z such that

(4)
piq a4 ¨ ¨ ¨ ak ” 1 pmod 2q;

piiq 8n ` α1 ` ¨ ¨ ¨ ` αk ´ pα4a
2
4 ` ¨ ¨ ¨ ` αka

2
kq ě 0;

piiiq 8n ` α1 ` ¨ ¨ ¨ ` αk ´ pα4a
2
4 ` ¨ ¨ ¨ ` αka

2
kq ÝÑ fpx1, x2, x3q.
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Then we know that Equation (1) has an integer solution. Finally, we directly
check that the sum ∆α1,α2,...,αk

of triangular numbers represents all remaining
small integers except a single one.

The work of Oh [11,12], and work of Oh and the author [8] led to the devel-
opment of a method that determines whether or not integers in an arithmetic
progression are represented by some particular ternary quadratic form. We
briefly introduce this method for those who are unfamiliar with it.

Let d be a positive integer and let a be a nonnegative integer pa ď dq. We
define

Sd,a “ tdn ` a | n P N Y t0uu.

For two positive definite integral ternary quadratic forms f, g, we define

Rpg, d, aq “ tv P pZ{dZq3 | vMgv
t ” a pmod dqu

and

Rpf, g, dq “ tT P M3pZq | T tMfT “ d2Mgu.

Since f and g are positive definite, the above two sets are always finite. A
coset (or, a vector in the coset) v P Rpg, d, aq is said to be good with respect to
f, g, d, and a if there is a T P Rpf, g, dq such that 1

d ¨ vT t P Z3. The set of all
good vectors in Rpg, d, aq is denoted by Rf pg, d, aq. If Rpg, d, aq “ Rf pg, d, aq,
we write

g ăd,a f.

Now, we introduce two theorems which play a crucial role in proving our
results.

Theorem 2.1. Under the same notations given above, if g ăd,a f , then

Sd,a X Qpgq Ă Qpfq.

Proof. The theorem follows directly from Lemma 2.2 of [11] (see also Theorem
2.1 in [7]). □

Theorem 2.2. Assume that T P M3pZq satisfies the following conditions:

(i) 1
dT has an infinite order;

(ii) T tMgT “ d2Mg;
(iii) for any vector v P Z3 such that v pmod dq P Bf pg, d, aq, 1

d ¨ vT t P Z3.

Then we have

Sd,a X Qpgqztgpzq ¨ s2 | s P Zu Ă Qpfq,

where the vector z is any integral primitive eigenvector of T .

Proof. See Theorem 2.1 of [8]. □

We define Bf pg, d, aq “ Rpg, d, aqzRf pg, d, aq and its cardinality is denoted
by |Bf pg, d, aq|psimply, |B|q. In general, if d is large, then it is hard to com-
pute the set Bf pg, d, aq exactly by hand. A MAGMA computer program for
computing this set is available upon request to the author.
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3. Proof of Theorem 1.1 and outline of the proofs of the other main
theorems

Let α1, . . . , αk be positive integers (k ě 1). For positive integer n, the n-
th nonnegative integer that is not represented by ∆α1,...,αk

is called the n-th
truant of ∆α1,...,αk

and denoted by Tnp∆α1,...,αk
q if it exists. If Tnp∆α1,...,αk

q

doesn’t exist, then we define Tnp∆α1,...,αk
q “ 8. We say every nonnegative

integer is less than 8 for convenience.
For a sum ∆α1,...,αk

of triangular numbers, without loss of generality, we
may assume that α1 ď ¨ ¨ ¨ ď αk. We say ∆α1,...,αk

is a candidate of almost
universal sums of triangular numbers with one exception m if it satisfies the
following conditions:

(i) ∆α1,...,αi
doesn’t represent m;

(ii) αi ď

#

T1p∆α1,...,αi´1
q if T1p∆α1,...,αi´1

q ă m,

T2p∆α1,...,αi´1
q if T1p∆α1,...,αi´1

q “ m

for all 1 ď i ď k, where T1p∆α1,...,αi´1
q and T2p∆α1,...,αi´1

q are defined above
when i ě 2 and we define T1p∆α1,...,αi´1q “ 1 and T2p∆α1,...,αi´1q “ 2 when
i “ 1. Note that every almost universal sum of triangular numbers with one
exception m is contained in the set of all candidates of almost universal sums
of triangular numbers with one exception m.

We say an almost universal sum ∆α1,...,αk
of triangular numbers with one

exception is proper if for any proper subset ti1, . . . , iuu Ă t1, . . . , ku, the partial
sum ∆αil

,...,αiu
doesn’t represent at least two nonnegative integers.

Proof of Theorem 1.1. Let α1, . . . , αk be positive integers. Assume that a sum
∆α1,...,αk

of triangular numbers is almost universal with one exception 1. With-
out loss of generality, we may assume that α1 ď ¨ ¨ ¨ ď αk. From the definition
of the candidate of almost universal sums of triangular numbers with one ex-
ception, one may easily check that ∆2 is the unique candidate of unary almost
universal sums of triangular numbers with one exception 1. However, it doesn’t
represent 3. Since T2p∆2q “ 3, we know that there are exactly two candidates
∆2,2 and ∆2,3 of binary almost universal sums of triangular numbers withe one
exception 1. Note that

T2p∆α1,α2
q “

#

3 if pα1, α2q “ p2, 2q,

4 if pα1, α2q “ p2, 3q.

Therefore, there are exactly four candidates

∆2,2,2, ∆2,2,3, ∆2,3,3, and ∆2,3,4

of ternary almost universal sums of triangular numbers with one exception
1. One may easily check that there are no ternary almost universal sums of
triangular numbers with one exception 1. Indeed, for each of the above four
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cases, the second truant is

(5) T2p∆α1,α2,α3q “

$

’

’

’

&

’

’

’

%

3 if pα1, α2, α3q “ p2, 2, 2q,

10 if pα1, α2, α3q “ p2, 2, 3q,

4 if pα1, α2, α3q “ p2, 3, 3q,

8 if pα1, α2, α3q “ p2, 3, 4q.

Therefore, if ∆α1,α2,α3,α4
is a candidate of almost universal sums of triangu-

lar numbers with one exception 1, then ∆α1,α2,α3
is a candidate of ternary

almost universal sums of triangular numbers with one exception 1 and α3 ď

α4 ď T2p∆α1,α2,α3q from (5). So there are 17 candidates of quaternary almost
universal sums of triangular numbers with one exception 1. One may easily
check that 6 sums of them don’t represent at least two nonnegative integers.
Actually, we know that

T2p∆α1,α2,α3,α4q “

$

’

’

’

&

’

’

’

%

T2p∆α1,α2,α3
q if pα1, α2, α3, α4q “ p2, 2, 2, 2q, p2, 2, 3, 9q,

p2, 3, 3, 3q, p2, 3, 4, 7q,

19 if pα1, α2, α3, α4q “ p2, 2, 3, 3q,

16 if pα1, α2, α3, α4q “ p2, 2, 3, 6q.

(6)

We will prove that remaining 11 quaternary candidates represent all nonnega-
tive integers except 1 (see Table 1).

Now, we classify all candidates of quinary almost universal sums of triangu-
lar numbers with one exception 1. Assume that ∆α1,α2,α3,α4,α5 is a candidate
of quinary almost universal sums of triangular numbers with one exception
1. Then ∆α1,α2,α3,α4

is one of the candidates of quaternary almost universal
sums of triangular numbers with one exception 1. If T2p∆α1,α2,α3,α4

q “ 8,
then it implies that ∆α1,α2,α3,α4

represents all nonnegative integers except 1.
Therefore, α5 can be any integer greater than or equal to α4. In this case
∆α1,α2,α3,α4,α5 is almost universal with one exception 1 but not proper. If
T2p∆α1,α2,α3,α4

q ‰ 8, then we have α4 ď α5 ď T2p∆α1,α2,α3,α4
q from (6).

In this case, we have 36 candidates of quinary almost universal sums of tri-
angular numbers with one exception 1. One may easily check that there are
12 sums among them that are almost universal with one exception 1 but not
proper. Furthermore, if α5 “ T2p∆α1,α2,α3,α4q ´ 1 for each possible case, then
∆α1,α2,α3,α4,α5 is not almost universal with one exception since it doesn’t rep-
resent 1 and T2p∆α1,α2,α3,α4

q. We will prove that remaining 18 quinary candi-
dates represent all nonnegative integers except 1 (see Table 1).

Finally, for k ě 6, we classify all candidates of k-ary almost universal sums
of triangular numbers with one exception 1. Assume that ∆α1,...,αk

is a candi-
date of k-ary almost universal sums of triangular numbers with one exception
1. Then ∆α1,...,αk´1

is one of the candidates of k´1-ary almost universal sums
of triangular numbers with one exception 1. If T2p∆α1,...,αk´1

q “ 8, then it
implies that ∆α1,...,αk´1

represents all nonnegative integers except 1. Therefore,
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αk can be any integer greater than or equal to αk´1. In this case, ∆α1,...,αk
is

almost universal with one exception 1 but not proper. If T2p∆α1,...,αk´1
q ‰ 8,

then αk´1 ď αk ď αk´1 ` 1 since T2p∆α1,...αk´1
q “ αk´1 ` 1. Note that

∆α1,...,αk´1,αk´1
is not almost universal with one exception since it doesn’t rep-

resent 1 and αk´1`1. Furthermore, ∆α1,...,αk´1,αk´1`1 is almost universal with
one exception 1 but not proper since ∆α1,α2,α3,αk´1`1 or ∆α1,α2,α3,α4,αk´1`1 is
already almost universal with one exception 1 for each possible case (see Table
1). Therefore, there are no k-ary proper almost universal sums of triangular
numbers with one exception 1 for any integer k ě 6 (see Table 1).

Now, we prove that above 11 quaternary and 18 quinary sums of triangular
numbers are proper almost universal with one exception 1. In all cases, it is
enough to show that each sum represents all nonnegative integers except 1 since
its properness is clear.

Table 1. Proper almost universal sums with one exception 1

Sums Candidates Conditions on αk

∆α1 α1 “ 2 α1 ‰ 2

∆2,α2 2 ď α2 ď 3 α2 ‰ 2, 3

∆2,2,α3
2 ď α3 ď 3 α3 ‰ 2, 3

∆2,3,α3 3 ď α3 ď 4 α3 ‰ 3, 4

∆2,2,2,α4 2 ď α4 ď 3 α4 ‰ 2

∆2,2,3,α4
3 ď α4 ď 10 α4 ‰ 3, 6, 9

∆2,3,3,α4
3 ď α4 ď 4 α4 ‰ 3

∆2,3,4,α4 4 ď α4 ď 8 α4 ‰ 7

∆α1,α2,α3,α4,α5
∆α1,α2,α3,α4

is a candidate, α5 ‰ α:
4, α4 ` 1:, . . .

T2p∆α1,α2,α3,α4
q “ 8, α5 ě α4

∆2,2,2,2,α5 2 ď α5 ď 3 α5 ‰ 2, 3:

∆2,2,3,3,α5
3 ď α5 ď 19 α5 ‰ 4:, 5:, 7:, 8:, 10:, 18

∆2,2,3,6,α5
6 ď α5 ď 16 α5 ‰ 7:, 8:, 10:, 15

∆2,2,3,9,α5 9 ď α5 ď 10 α5 ‰ 9, 10:

∆2,3,3,3,α5
3 ď α5 ď 4 α5 ‰ 3, 4:

∆2,3,4,7,α5
7 ď α5 ď 8 α5 ‰ 7, 8:

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

is a candidate, αk ‰ α:

k´1, αk´1 ` 1:, . . .

T2p∆α1,...,αk´1
q “ 8, αk ě αk´1

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

is a candidate, αk ‰ αk´1, αk´1 ` 1:

T2p∆α1,...,αk´1
q ‰ 8,

αk´1 ď αk ď αk´1 ` 1
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(i) Let pα1, α2, α3q “ p2, 2, 2q. We show that ∆2,2,2,3 is an almost universal sum
of triangular numbers with one exception 1. Since ∆1,1,1 is universal, ∆2,2,2

represents all nonnegative even integers. Let n be an odd integer greater than
1. Since n´ 3 is represented by ∆2,2,2, n is represented by ∆2,2,2,3. Therefore,
∆2,2,2,3 is an almost universal sum of triangular numbers with one exception
1.
(ii) Let pα1, α2, α3q “ p2, 2, 3q. We show that ∆2,2,3,α4

(3 ď α4 ď 10, α4 ‰

3, 6, 9) are almost universal sums of triangular numbers with one exception 1.
Similarly in the proof of the case (i), since ∆1,1,2, ∆1,1,4, and ∆1,1,5 are uni-
versal, ∆2,2,3,4, ∆2,2,3,8, and ∆2,2,3,10 are almost universal with one exception
1, respectively.

Assume that α5 is 5 or 7. Since the proofs are quite similar to each other,
we only provide the proof of ∆2,2,3,5. By Equation (1), it suffices to show that
the equation

(7) 2x2 ` 2y2 ` 3z2 ` 5t2 “ 8n ` 12

has an integer solution px, y, z, tq P Z4 such that xyzt ” 1 pmod 2q for any
nonnegative integer n except 1. If n “ 0 or 2 ď n ď 4, then one may directly
check that Equation (7) has a desired integer solution. Therefore, we may
assume that n ě 5. Note that the genus of fpx, y, zq “ 2p4x ` yq2 ` 2y2 ` 3z2

consists of

Mf “ x3, 4, 16y and M2 “ x4y K

ˆ

7 1
1 7

˙

.

For a nonnegative integer m, if m ” 7 pmod 8q and m ‰ 32u`1p3v ` 2q for any
nonnegative integers u and v, then m is represented by Mf or M2 by 102:5 of
[13], for it is represented by Mf over Zp for any prime p. One may easily check
that

M2 ă8,7 Mf .

Note that 8n ` 12 ´ 5d2 ” 7 pmod 8q and 8n ` 12 ´ 5d2 ı 0 pmod 3q, where

d “

#

1 if 8n ` 12 ” 0 pmod 3q,

3 if 8n ` 12 ı 0 pmod 3q.

Furthermore, since we are assuming n ě 5, 8n`12´5d2 is positive. Therefore,
the equation

2x2 ` 2y2 ` 3z2 “ 8n ` 12 ´ 5d2

has an integer solution px, y, zq P Z3 such that x ” y pmod 4q by Theorem 2.1.
This completes the proof.
(iii) Let pα1, α2, α3q “ p2, 3, 3q. We show that ∆2,3,3,4 is an almost universal
sum of triangular numbers with one exception 1. By Equation (1), it suffices
to show that the equation

(8) 2x2 ` 3y2 ` 3z2 ` 4t2 “ 8n ` 12

has an integer solution px, y, z, tq P Z4 such that xyzt ” 1 pmod 2q for any
nonnegative integer n except 1. The class number of fpx, y, zq “ 2x2`3y2`3z2
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is one. For a nonnegative integer m, if m ” 0 pmod 8q and m ı 32up3v ` 1q for
any nonnegative integers u and v, then m is represented by f over Zp for any
prime p, in particular, it is primitively represented by f over Z2. Let 8n`12 “

32ℓp8k`4q for some nonnegative integers ℓ and k such that 8k`4 ı 0 pmod 9q.
If k “ 0, note that for any ℓ ě 1,

2p3ℓ´1q2 ` 3p3ℓ´1q2 ` 3p3ℓq2 ` 4p3ℓ´1q2 “ 4 ¨ 32ℓ.

If k “ 2, note that for any ℓ ě 1,

2p7 ¨ 3ℓ´1q2 ` 3p5 ¨ 3ℓ´1q2 ` 3p3ℓ´1q2 ` 4p3ℓ´1q2 “ 20 ¨ 32ℓ.

One may directly check that if 0 ď k ď 12, k ‰ 0, 2, then the equation

2x2 ` 3y2 ` 3z2 ` 4t2 “ 8k ` 4

has an integer solution px, y, z, tq P Z4 such that xyzt ” 1 pmod 2q. Therefore
we may assume that k ě 13. One may easily check that 8k ` 4 ´ 4d2 is
represented by f over Zp for any p, where

d “

$

’

&

’

%

3 if 8k ` 4 ” r pmod 9q for any r P t2, 3, 5, 6, 8u,

1 if 8k ` 4 ” r pmod 9q for any r P t1, 7u,

5 if 8k ` 4 ” 4 pmod 9q,

in particular, it is primitively represented by f over Z2. Furthermore, since we
are assuming k ě 12, 8k ` 4 ´ 4d2 is positive. By 102:5 of [13], the equation

2x2 ` 3y2 ` 3z2 “ 8k ` 4 ´ 4d2

has an integer solution px, y, zq P Z3 such that xyz ” 1 pmod 2q. This completes
the proof.
(iv) Let pα1, α2, α3q “ p2, 3, 4q. We show that ∆2,3,4,α4

(4 ď α4 ď 8, α4 ‰ 7)
are almost universal sums of triangular numbers with one exception 1. Sim-
ilarly in the proof of case (i), since ∆1,2,2, ∆1,2,3, and ∆1,2,4 are universal,
∆2,3,4,4, ∆2,3,4,6, and ∆2,3,4,8 are almost universal with one exception 1.

Assume α4 “ 5. By Equation (1), It suffices to show that the equation

(9) 2x2 ` 3y2 ` 4z2 ` 5t2 “ 8n ` 14

has an integer solution px, y, z, tq P Z4 such that xyzt ” 1 pmod 2q for any
nonnegative integer n except 1. If n “ 0 or 2 ď n ď 218, then one may directly
check that Equation (9) has a desired integer solution. Therefore we may
assume that n ě 219. Note that the genus of fpx, y, tq “ 2p2x` yq2 ` 3y2 ` 5t2

consists of

Mf “

ˆ

5 1
1 5

˙

K x5y and M2 “ x1, 1, 120y.

For a nonnegative integer m, if m ” 2 pmod 8q and m ı 0 pmod 3q, then m is
represented by Mf or M2 by 102:5 of [13], for it is represented by Mf over Zp

for any prime p. One may easily check that

M2 ă7,r Mf
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for any r P t0, 3, 5, 6u. Assume that 8n ` 14 ı 0 pmod 3q. Note that 8n ` 14 ´

4d2 ” 2 pmod 8q, 8n ` 14 ´ 4d2 ı 0 pmod 3q, and 8n ` 14 ´ 4d2 ” r pmod 7q

for some r P t0, 3, 5, 6u, where

d “

$

’

&

’

%

21 if 8n ` 14 ” r pmod 7q for any r P t0, 3, 5, 6u,

3 if 8n ` 14 ” r pmod 7q for any r P t1, 4u,

9 if 8n ` 14 ” 2 pmod 7q.

Assume that 8n ` 14 ” 0 pmod 3q. Note that 8n ` 14 ´ 4d2 ” 2 pmod 8q,
8n`14´4d2 ı 0 pmod 3q, and 8n`14´4d2 ” r pmod 7q for some r P t0, 3, 5, 6u,
where

d “

$

’

&

’

%

7 if 8n ` 14 ” r pmod 7q for any r P t0, 3, 5, 6u,

1 if 8n ` 14 ” r pmod 7q for any r P t2, 4u,

5 if 8n ` 14 ” 1 pmod 7q.

Furthermore, since we are assuming n ě 219, 8n ` 14 ´ 4d2 is positive. There-
fore, the equation

2x2 ` 3y2 ` 5t2 “ 8n ` 14 ´ 4d2

has an integer solution by Theorem 2.1. This completes the proof.
To explain our main method that determines whether or not integers in

an arithmetic progression are represented by some particular ternary quadratic
form, we give another proof for almost universality of ∆2,3,4,4 by using Theorem
2.2. By Equation (1), it suffices to show that the equation

(10) 2x2 ` 3y2 ` 4z2 ` 4t2 “ 8n ` 13

has an integer solution px, y, z, tq P Z4 such that xyzt ” 1 pmod 2q for any
nonnegative integer n except 1. If n “ 0 or 2 ď n ď 11, then one may directly
check that Equation (10) has a desired integer solution. Therefore, we may
assume that n ě 12. Note that the genus of fpx, y, zq “ 2x2 ` 3y2 ` 4z2

consists of
fpx, y, zq and gpx, y, zq “ x2 ` 2y2 ` 12z2.

For a nonnegative integer m, if m ” 1 pmod 8q, then m is represented by Mf

or M2 by 102:5 of [13], for it is represented by Mf over Zp for any prime p.
One may easily show that

Bf pg, 5, 1q “ t˘p1, 0, 0qu and Bf pg, 5, 4q “ t˘p2, 0, 0qu.

In each case, if we define

T “

¨

˝

5 0 0
0 1 ´12
0 2 1

˛

‚,

then one may easily show that it satisfies all conditions in Theorem 2.2. Note
that z “ ˘p1, 0, 0q are the only integral primitive eigenvectors of T . Therefore,
we have

S5,r X Qpgqzts2|s P Zu Ă Qpfq
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for any r P t1, 4u. Since g is contained in the spinor genus of f , every square
t2 of an integer that has a prime divisor greater than 3 is represented by f by
Lemma 2.4 in [9]. If t is divisible by 2 (3), then t2 is represented by f since
4 p9, respectivelyq is represented by f . Therefore, every integer greater than 1
that is congruent to 1 modulo 8 and congruent to 1 or 4 modulo 5 is represented
by f . Note that 8n ` 13 ´ 4d2 is congruent to 1 modulo 8 and congruent to 1
or 4 modulo 5, where

d “

$

’

&

’

%

1 if 8n ` 13 ” r pmod 5q for any r P t0, 3u,

5 if 8n ` 13 ” r pmod 5q for any r P t1, 4u,

3 if 8n ` 13 ” 2 pmod 5q.

Furthermore, since we are assuming n ě 12, 8n ` 13 ´ 4d2 ě 2. Therefore, the
equation

2x2 ` 3y2 ` 4z2 “ 8n ` 13 ´ 4d2

has an integer solution. This completes the proof.
(v) Let pα1, α2, α3, α4q “ p2, 2, 3, 3q. We show that ∆2,2,3,3,α5 (3 ď α5 ď 19,
α5 ‰ 4, 5, 7, 8, 10, 18) are almost universal sums of triangular numbers with one
exception 1.

Assume α5 “ 3. Since ∆1,1,1 is universal, ∆3,3,3 represents every nonnegative
integer divisible by 3. If 2 ď n ď 4, then one may easily check that n is
represented by ∆2,2,3,3,3. Assume n ě 5. Then one may easily check that
n ´ c ´ d is represented by ∆3,3,3, where

pc, dq “

$

’

&

’

%

p0, 0q if n ” 0 pmod 3q,

p2, 2q if n ” 1 pmod 3q,

p2, 0q if n ” 2 pmod 3q.

Therefore, ∆2,2,3,3,3 is almost universal with one exception 1. Similarly, ∆2,2,3,3,6,
∆2,2,3,3,12, and ∆2,2,3,3,15 are almost universal with one exception 1.

If α5 ı 0 pmod 3q, then the proofs are quite similar to the proof of ∆2,2,3,5

in the case (ii).
Assume that α5 “ 9. By Equation (1), it suffices to show that

(11) 2x2 ` 2y2 ` 3z2 ` 3t2 ` 9s2 “ 8n ` 19

has an integer solution px, y, z, t, sq P Z5 such that xyzts ” 1 pmod 2q for any
nonnegative integer n except 1. Let 8n`19 “ 32ℓp8k`3q for some nonnegative
integers ℓ and k such that 8k ` 3 ı 0 pmod 9q. For the case when k “ 0, note
that for any ℓ ě 2,

2p3ℓq2 ` 2p3ℓ´1q2 ` 3p3ℓ´1q2 ` 3p3ℓ´1q2 ` 9p3ℓ´2q2 “ 3 ¨ 32ℓ.

For the case when k “ 1, note that for any ℓ ě 1,

2p3ℓq2 ` 2p3ℓq2 ` 3p3ℓq2 ` 3p3ℓq2 ` 9p3ℓ´1q2 “ 11 ¨ 32ℓ.
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If k “ 2, 4, then one may directly check that the equation

2x2 ` 2y2 ` 3z2 ` 3t2 ` 9s2 “ 8k ` 3

has an integer solution px, y, z, t, sq P Z5 such that xyzts ” 1 pmod 2q. There-
fore, we may assume that k ě 5. Note that 8k`3´3d2 ´9e2 ” 7 pmod 8q and
8k` 3´ 3d2 ´ 9e2 ‰ 32u`1p3v ` 2q for any nonnegative integers u and v, where

pd, eq “

$

’

&

’

%

p1, 1q if 8k ` 3 ı 0 pmod 3q,

p3, 1q if 8k ` 3 ” 3 pmod 9q,

p1, 1q if 8k ` 3 ” 6 pmod 9q.

Furthermore, since we are assuming that k ě 5, 8k ` 3 ´ 3d2 ´ 9e2 is positive
and it is represented by 2p4x ` yq2 ` 2y2 ` 3z2 (see the proof of ∆2,2,3,5 in the
case (ii)). Therefore, the equation

2x2 ` 2y2 ` 3z2 “ 8k ` 3 ´ 3d2 ´ 9e2

has an integer solution such that x ” y pmod 4q. This completes the proof.
(vi) Let pα1, α2, α3, α4q “ p2, 2, 3, 6q. We show that ∆2,2,3,6,α5

(6 ď α5 ď

16, α5 ‰ 7, 8, 10, 15) are almost universal sums of triangular numbers with one
exception 1. Similarly as in the proof of case (v), since ∆3,6,6, ∆3,6,9, and
∆3,6,12 represent all nonnegative integers divisible by 3, ∆2,2,3,3,6, ∆2,2,3,6,9,
and ∆2,2,3,6,12 are almost universal with one exception 1.

If α5 ı 0 pmod 3q, then the proofs are quite similar to the proof of ∆2,2,3,5

in the case (ii). This completes the proof.
Now, we give a proof of the first statement of Theorem 1.1. For positive

integers α1, . . . , αk, assume that a sum ∆α1,α2,...,αk
of triangular numbers rep-

resents the integers

2, 3, 4, 8, 10, 16, and 19

and doesn’t represent 1. By using the same escalation method to the above, we
know that there is a subset ti1, i2, i3, i4u of tα1, . . . , αku such that ∆αi1

,αi2
,αi3

,αi4

is contained in the above 11 quaternary proper almost universal sums of trian-
gular numbers with one exception 1, or a subset tj1, j2, j3, j4, j5u of tα1, . . . , αku

such that ∆αj1
,αj2

,αj3
,αj4

,αj5
is contained in the above 18 quinary ones. There-

fore, ∆α1,...,αk
represents all nonnegative integers except 1. This completes the

proof. □

The proofs of Theorems 1.2, 1.3, 1.4, and 1.6 are quite similar to the proof
of Theorem 1.1. In each proof, by using an escalation method, we find all
candidates of proper almost universal sums of triangular numbers with one
exception 4, 5, 8, and 2, respectively. Furthermore, we show that each candidate
∆α1,...,αk

pk “ 4, 5q represents all nonnegative integers except a single one. To
show this, we take a suitable ternary quadratic form fpx1, x2, x3q related with
ternary section ∆αi1

,αi2
,αi3

of ∆α1,...,αk
like in Equation (3). After that for

sufficiently large integer n, we find integers a4, . . . , ak P Z satisfying condition
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(4). Finally, we directly check that ∆α1,...,αk
represents all remaining small

integers except a single one.
Note that in most cases, the class number of f is less than or equal to 2.

The methods for computations for representations of f are categorized into the
following three cases:

(i) if hpfq “ 1, then one may easily compute the representations of f by
the local-global principle similarly to the proof of ∆2,3,3,4 in the case
(iii) of Theorem 1.1;

(ii) if hpfq “ 2 and |B| “ |Bf pg, d, aq| “ 0 for some integers d and a, where
g is the genus mate of f , then one may compute the representations of
f by Theorem 2.1 similarly to the proof of ∆2,2,3,5 in the case (ii) of
Theorem 1.1 (see also the proof of ∆2,3,4,5 in the case (iv) of Theorem
1.1);

(iii) if hpfq “ 2 and |B| ‰ 0, then one may compute the representations of
f by Theorem 2.2 similarly to the second proof of ∆2,3,4,4 in the case
(iv) of Theorem 1.1.

In the remaining sections, since most of proofs require laborious computa-
tion, we only provide all parameters for the computations for the representa-
tions of the ternary quadratic form f (see Sections 4, 5, 6, and 7). One may
easily apply the given parameters to the local-global principle, Theorem 2.1 or
Theorem 2.2 to compute the representations of the ternary quadratic form f .
We leave to the readers to find suitable integers α4, . . . , αk stated above and
to check the representations of remaining small integers. For the complete list
of proper almost universal sums of triangular numbers with one exception, see
Tables 1, 2, 10, 13, and 15.

4. Proof of Theorem 1.2

We give a proof of Theorem 1.2. From a similar escalation method in the
proof of Theorem 1.1, we find all candidates of 127 quaternary and 11 quinary
proper almost universal sums of triangular numbers with one exception 4 (see
Table 2).

Since the proof of almost universality of each candidate is quite similar to
the proof of Theorem 1.1, we only provide all parameters for the computations
for representations of the ternary quadratic form f (see Tables 3, 4, 5, 6, 7, 8,
and 9).

5. Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. From a similar escalation
method in the proof of Theorem 1.1, we find all candidates of 56 quaternary
and 115 quinary proper almost universal sums of triangular numbers with one
exception 5 (see Table 10). The proof of almost universality of each candi-
date is quite similar to the proof of Theorem 1.1 except for the cases when
pα1, α2, α3q “ p1, 1, 8q.



946 J. JU

Table 2. Proper almost universal sums with one exception 4

Sums Candidates Conditions on αk

∆α1
α1 “ 1 α1 ‰ 1

∆1,α2
α2 “ 2 α2 ‰ 2

∆1,2,α3
5 ď α3 ď 11 α3 ‰ 5, 6, 7, 8, 9, 10, 11

∆1,2,5,α4 5 ď α4 ď 19 α4 ‰ 10, 15
∆1,2,6,α4

6 ď α4 ď 50 α4 ‰ 46
∆1,2,7,α4

7 ď α4 ď 11 α4 ‰ 7
∆1,2,8,α4 8 ď α4 ď 19 α4 ‰ 15
∆1,2,9,α4

9 ď α4 ď 46 α4 ‰ 42
∆1,2,10,α4

10 ď α4 ď 14 α4 ‰ 10
∆1,2,11,α4 11 ď α4 ď 25 α4 ‰ 21

∆α1,α2,α3,α4,α5
∆α1,α2,α3,α4

q is a candidate, α5 ‰ α:
4, α4 ` 1:, . . .

T2p∆α1,α2,α3,α4
q “ 8, α5 ě α4

∆1,2,5,10,α5
10 ď α5 ď 29 α5 ‰ 11:, 12:, 13:, 14:, 16:,

17:, 18:, 19:, 25
∆1,2,5,15,α5

15 ď α5 ď 19 α5 ‰ 15, 16:, 17:, 18:, 19:

∆1,2,6,46,α5 46 ď α5 ď 50 α5 ‰ 46, 47:, 48:, 49:, 50:

∆1,2,7,7,α5
7 ď α5 ď 11 α5 ‰ 7, 8:, 9:, 10:, 11:

∆1,2,8,15,α5
15 ď α5 ď 19 α5 ‰ 15, 16:, 17:, 18:, 19:

∆1,2,9,42,α5 42 ď α5 ď 46 α5 ‰ 42, 43:, 44:, 45:, 46:

∆1,2,10,10,α5
10 ď α5 ď 14 α5 ‰ 10, 11:, 12:, 13:, 14:

∆1,2,11,21,α5
21 ď α5 ď 25 α5 ‰ 21, 22:, 23:, 24:, 25:

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

is a candidate, αk ‰ α:

k´1, αk´1 ` 1:, . . .
T2p∆α1,...,αk´1

q “ 8, αk ě αk´1

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

is a candidate, αk ‰ αk´1 ` ℓ
T2p∆α1,...,αk´1

q ‰ 8, pℓ “ 0, 1:, 2:, 3:, 4:q

αk´1 ď αk ď αk´1 ` 4

Table 3. Data for the proof of the candidates when pα1, α2, α3q “ p1, 2, 5q

∆αi1 ,αi2 ,αi3 Sufficient conditions for m Ñ f
f hpfq

∆1,2,5
m ” 0 pmod 8q, m ‰ 52u`1p5v ˘ 2q

x2 ` 2y2 ` 5z2 1

Assume pα1, α2, α3q “ p1, 1, 8q. We show that ∆1,1,8,α4 p8 ď α4 ď 41, α4 ‰

30, 36q are almost universal sums of triangular numbers with one exception 5.
Since the proofs are quite similar to each other, we only provide the proof of
∆1,1,8,8. By Equation (1), it suffices to show that the equation

(12) x2 ` y2 ` 8z2 ` 8t2 “ 8n ` 18

has an integer solution px, y, z, tq P Z4 such that xyzt ” 1 pmod 2q. If 0 ď

n ď 19, then one may directly check that Equation (12) has a desired integer
solution. Therefore, we may assume that n ě 20. Note that the genus of
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Table 4. Data for the proof of the candidates when pα1, α2, α3q “ p1, 2, 6q

α4 ∆αi1 ,αi2 ,αi3

d a |B|
T Sufficient conditions

for m Ñ f
f hpfq

Mf M2 z Qpzq

α4 ı 0 pmod 5q ∆1,2,6

20 5, 13, 17 0
m ” 1 pmod 8q,

m ” 0, 2, 3 pmod 5q

p2x ` yq2 ` 2y2 ` 6z2 2
¨

˝

3 1

1 3

˛

‚K x6y x1, 2, 24y

α4 “ 10, 20, 40, 45 ∆1,2,6

28 1, 9, 25 16

¨

˚

˚

˝

28 0 0

0 26 ´36

0 3 26

˛

‹

‹

‚

m ą 1,

m ” 1 pmod 8q,

m ” 1, 2, 4 pmod 7q

p2x ` yq2 ` 2y2 ` 6z2 2
¨

˝

3 1

1 3

˛

‚K x6y x1, 2, 24y
˘p1, 0, 0q 1

α4 “ 25, 30, 35 ∆1,2,6

52
1, 9, 17,

25, 29, 49
16

¨

˚

˚

˝

52 0 0

0 46 ´84

0 7 46

˛

‹

‹

‚

m ą 1,

m ” 1 pmod 8q,

m ” 1, 3, 4, 9, 10,

12 pmod 13q

p2x ` yq2 ` 2y2 ` 6z2 2
¨

˝

3 1

1 3

˛

‚K x6y x1, 2, 24y
˘p1, 0, 0q 1

α4 “ 15, 50 ∆1,2,6

76

1, 5, 9,

17, 25, 45,

49, 61, 73

16

¨

˚

˚

˝

76 0 0

0 74 ´60

0 5 74

˛

‹

‹

‚

m ą 1,

m ” 1 pmod 8q,

m ” 1, 4, 5, 6, 7, 9, 11,

16, 17 pmod 19q

p2x ` yq2 ` 2y2 ` 6z2 2
¨

˝

3 1

1 3

˛

‚K x6y x1, 2, 24y
˘p1, 0, 0q 1

Table 5. Data for the proof of the candidates when pα1, α2, α3q “ p1, 2, 7q

α4 ∆αi1
,αi2

,αi3

d a |B|
Sufficient conditions

for m Ñ f
f hpfq

Mf M2

α4 “ 10 ∆1,2,10
m ” 5 pmod 8q,

m ı 0 pmod 5q
x2 ` 2y2 ` 10t2 1

x1, 2, 10y

α4 “ 8, 9, 11 ∆1,2,7

80
10, 26, 34,

50, 66, 74
0

m ” 2 pmod 8q,

m ” 0, 1, 4 pmod 5q,

m ı 0 pmod 7q

p2x ` yq2 ` 2y2 ` 7z2 2

˜

3 1

1 3

¸

K x7y

¨

˚

˚

˝

2 0 1

0 2 1

1 1 15

˛

‹

‹

‚

fpx, y, zq “ x2 ` p2y ` zq2 ` 8z2 consists of

Mf “

¨

˝

1 0 0
0 4 2
0 2 9

˛

‚, M2 “ x1, 1, 32y, and M3 “

¨

˝

2 0 1
0 2 1
1 1 9

˛

‚.
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Table 6. Data for the proof of the candidates when pα1, α2, α3q “ p1, 2, 8q

α4 ∆αi1 ,αi2 ,αi3

d a |B|
Sufficient conditions

for m Ñ f
f hpfq

Mf M2

α4 “ 10 ∆1,2,10
m ” 5 pmod 8q,

m ı 0 pmod 5q
x2 ` 2y2 ` 10t2 1

x1, 2, 10y

α4 ı 0 pmod 5q ∆1,2,8

40 11, 19, 35 0
m ” 3 pmod 8q,

m ” 0, 1, 4 pmod 5q

x2 ` 2p2y ` zq2 ` 8z2 2

x1y K

¨

˝

8 4

4 10

˛

‚

¨

˚

˚

˚

˝

3 ´1 1

´1 3 1

1 1 9

˛

‹

‹

‹

‚

Table 7. Data for the proof of the candidates when pα1, α2, α3q “ p1, 2, 9q

α4 ∆αi1 ,αi2 ,αi3

d a |B|
T Sufficient conditions

for m Ñ f
f hpfq

Mf M2 z Qpzq

α4 “ 21 ∆1,9,21
m ” 7 pmod 8q,

m “ 3up3v ` 1q, pu ď 1q
x2 ` 9z2 ` 21t2 1

x1, 9, 21y

α4 ı 0 pmod 7q ∆1,2,9

7
0, 3,

5, 6
0

m ” 4 pmod 8q,

m ” 0, 3, 5, 6 pmod 7q

p4x ` zq2 ` 2y2 ` 9z2 2

x2y K

¨

˝

10 4

4 16

˛

‚

¨

˚

˚

˚

˝

4 0 2

0 8 0

2 0 10

˛

‹

‹

‹

‚

α4 “ 14, 28, 35 ∆1,2,9 3 0 0

m ą 4,

m ” 4 pmod 8q,

m ı 2 pmod 3q

p4x ` zq2 ` 2y2 ` 9z2 2

9 1, 4, 7 6

¨

˚

˚

˚

˝

9 4 3

0 3 9

0 ´8 3

˛

‹

‹

‹

‚

x2y K

¨

˝

10 4

4 16

˛

‚

¨

˚

˚

˚

˝

4 0 2

0 8 0

2 0 10

˛

‹

‹

‹

‚

˘p1, 0, 0q 4

For an integer m, if m ” 2 pmod 8q, then m is represented by Mf , M2, or M3 by
102:5 of [13], for it is represented by Mf over Zp for any prime p. Furthermore,
note that the spinor genus of f consists of unique class f , itself. One may easily
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Table 8. Data for the proof of the candidates when pα1, α2, α3q “ p1, 2, 10q

∆αi1
,αi2

,αi3 Sufficient conditions for m Ñ f
f hpfq

∆1,2,10
m ” 5 pmod 8q,m ı 0 pmod 5q

x2 ` 2y2 ` 10z2 1

Table 9. Data for the proof of the candidates when pα1, α2, α3q “ p1, 2, 11q

α4 ∆αi1
,αi2

,αi3

d a |B|
T Sufficient conditions

for m Ñ f
f hpfq

Mf M2 z Qpzq

α4 ı 0 pmod 5q ∆1,2,11

20
2, 10,

18
0

m ” 6 pmod 8q,

m ” 0, 2, 3 pmod 5q

p2x ` yq2 ` 2y2 ` 11z2 2
ˆ

3 1

1 3

˙

K x11y

¨

˝

3 1 1

1 6 2

1 2 6

˛

‚

α4 “ 15 ∆1,2,15 3 0 0
m ą 2,

m ” 2 pmod 8q,

m ı 10, 26 pmod 48q,

m ı 0 pmod 5q

p2x ` yq2 ` 2y2 ` 15t2 2

48 2, 34 384

¨

˝

48 30 72

0 ´12 ´144

0 15 ´12

˛

‚

ˆ

3 1

1 3

˙

K x15y

ˆ

2 1

1 3

˙

K x24y

˘p1, 0, 0q 2

α4 “ 20 ∆1,2,20

3 2 2

¨

˝

1 ´4 0

2 1 0

0 0 3

˛

‚

m ” 7 pmod 8q,

m ı 0 pmod 5q,

m ı 3, 6, 7, 10, 12,

13, 19 pmod 21q

x2 ` 2y2 ` 20t2 2

x1, 2, 20y x2, 4, 5y

˘p0, 0, 1q 5

7
1, 2,

4
2

¨

˝

3 0 ´10

0 7 0

4 0 3

˛

‚

˘p0, 1, 0q 4

21 0 0

α4 “ 25 ∆1,2,11

52

10, 14,

22, 30,

38, 42

16

¨

˝

36 ´32 32

24 48 4

´20 12 40

˛

‚

m ” 6 pmod 8q,

m ” 1, 3, 4, 9, 10,

12 pmod 13q

p2x ` yq2 ` 2y2 ` 11z2 2
ˆ

3 1

1 3

˙

K x11y

¨

˝

3 1 1

1 6 2

1 2 6

˛

‚

˘p0, 1, 1q 16

show that a positive integer a is a spinor exception of the genus of f only if
a “ 2m2 for some m P Z (for details, see [16]). Assume that

8n ` 18 ´ 8 “ 2m2
1 and 8n ` 18 ´ 8 ¨ 32 “ 2m2

2

for some m1,m2 P Z. Then 2m2
1 ´ 2m2

2 “ 64. So pm1,m2q P tp9, 7q, p6, 2qu.
However this is impossible since we are assuming n ě 20. Therefore, one of the
integers 8n ` 18 ´ 8 or 8n ` 18 ´ 8 ¨ 32 is not spinor exception of the genus of
f , in fact, it is represented by f . This implies that the equation

x2 ` y2 ` 8z2 “ 8n ` 18 ´ 8d2
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Table 10. Proper almost universal sums with one exception 5

Sums Candidates Conditions on αk

∆α1
α1 “ 1 α1 ‰ 1

∆1,α2
α2 “ 1 α2 ‰ 1

∆1,1,α3
6 ď α3 ď 8 α3 ‰ 6, 7, 8

∆1,1,6,α4 6 ď α4 ď 14 α4 ‰ 6, 9
∆1,1,7,α4

7 ď α4 ď 26 α4 ‰ 7, 14, 21
∆1,1,8,α4

8 ď α4 ď 41 α4 ‰ 30, 36

∆α1,α2,α3,α4,α5
∆α1,α2,α3,α4

q is a candidate, α5 ‰ α:
4, α4 ` 1:, . . .

T2p∆α1,α2,α3,α4q “ 8, α5 ě α4

∆1,1,6,6,α5
6 ď α5 ď 59 α5 ‰ 7:, 8:, 10:, 11:, 12:, 13:,

14:, 54
∆1,1,6,9,α5

9 ď α5 ď 14 α5 ‰ 9, 10:, 11:, 12:, 13:, 14:

∆1,1,7,7,α5
7 ď α5 ď 47 α5 ‰ 8:, 9:, 10:, 11:, 12:, 13:,

15:, 16:, 17:, 18:, 19:, 20:,
22:, 23:, 24:, 25:, 26:, 42

∆1,1,7,14,α5
14 ď α5 ď 40 α5 ‰ 15:, 16:, 17:, 18:, 19:, 20:,

22:, 23:, 24:, 25:, 26:, 35
∆1,1,7,21,α5

21 ď α5 ď 26 α5 ‰ 21, 22:, 23:, 24:, 25:, 26:

∆1,1,8,30,α5 30 ď α5 ď 71 α5 ‰ 31:, 32:, 33:, 34:, 35:, 37:,
38:, 39:, 40:, 41:, 66

∆1,1,8,36,α5 36 ď α5 ď 41 α5 ‰ 36, 37:, 38:, 39:, 40:, 41:

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

q is a candidate, αk ‰ α:

k´1, αk´1 ` 1:, . . .
T2p∆α1,...,αk´1

q “ 8, αk ě αk´1

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

is a candidate, αk ‰ αk´1 ` ℓ
T2p∆α1,...,αk´1

q ‰ 8, pℓ “ 0, 1:, 2:, 3:, 4:, 5:q

αk´1 ď αk ď αk´1 ` 5

has an integer solution px, y, zq P Z3 for some d P t1, 3u such that y ” z pmod 2q.
This completes the proof.

Now, we show that ∆1,1,8,30,α5
p30 ď α5 ď 71, α5 ‰ 31, 32, 33, 34, 35, 37,

38, 39, 40, 41, 66q are almost universal sums of triangular numbers with one
exception 5. Similarly as above, one may easily show that ∆1,1,8,30 represents all
nonnegative integers except 5 and 71. Therefore, every ∆1,1,8,30,α5

is an almost
universal sum of triangular numbers with one exception 5. This completes the
proof.

In the remaining cases, since the proof of the almost universality of each
candidate is quite similar to the proof of Theorem 1.1, we only provide all
parameters for the computations for representations of the ternary quadratic
form f (see Tables 11 and 12).

6. Proof of Theorem 1.4

In this section, we give a proof of Theorem 1.4. From a similar escalation
method in the proof of Theorem 1.1, we find all candidates of 7 quaternary
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Table 11. Data for the proof of the candidates when pα1, α2, α3q “ p1, 1, 6q

α4 ∆αi1
,αi2

,αi3 Sufficient conditions for m Ñ f
f hpfq

every case ∆1,1,6 m ” 0 pmod 8q,m ‰ 32u`1p3v ` 1q
x2 ` y2 ` 6z2 1

α4 “ 12 ∆1,1,12 m ” 6 pmod 8q, m ‰ 32u`1p3v ` 2q
x2 ` y2 ` 12t2 1

Table 12. Data for the proof of the candidates when pα1, α2, α3q “ p1, 1, 7q

∆αi1
,αi2

,αi3

d a |B|
T Sufficient conditions

for m Ñ f
f hpfq

Mf M2 z Qpzq

∆1,1,7

8 1 8

¨

˝

8 0 0
0 6 ´14
0 2 6

˛

‚

m ą 1,
m ı 0 pmod 49q,
m ” 1 pmod 8q,
m ‰ 72u`1p7v ` rq

for any r P t3, 5, 6u

p2x ` yq2 ` 2y2 ` 7z2 2

x2, 2, 7y x1, 2, 14y

˘p1, 0, 0q 1

and 73 quinary proper almost universal sums of triangular numbers with one
exception 8 (see Table 13).

Table 13. Proper almost universal sums with one exception 8

Sums Candidates Conditions on αk

∆α1 α1 “ 1 α1 ‰ 1

∆1,α2 α2 “ 1 α2 ‰ 1

∆1,1,α3
α3 “ 3 α3 ‰ 3

∆1,1,3,α4
9 ď α4 ď 17 α4 ‰ 9, 12

∆α1,α2,α3,α4,α5 ∆α1,α2,α3,α4 is a candidate, α5 ‰ α:
4, α4 ` 1:, . . .

T2p∆α1,α2,α3,α4q “ 8, α5 ě α4

∆1,1,3,9,α5
9 ď α5 ď 17 α5 ‰ 9, 10:, 11:, 13:, 14:, 15:,

16:, 17:

∆1,1,3,12,α5
12 ď α5 ď 89 α5 ‰ 13:, 14:, 15:, 16:, 17:, 81

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

is a candidate, αk ‰ α:

k´1, αk´1 ` 1:, . . .
T2p∆α1,...,αk´1

q “ 8, αk ě αk´1

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

8 is a candidate, αk ‰ αk´1 ` ℓ
T2p∆α1,...,αk´1

q ‰ 8, pℓ “ 0, 1:, 2:, 3:, 4:,
αk´1 ď αk ď αk´1 ` 8 5:, 6:, 7:, 8:q

Since the proof of almost universality of each candidate is quite similar to
the proof of Theorem 1.1, we only provide all parameters for the computations
for representations of the ternary quadratic form f (see Table 14).
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Table 14. Data for the proof of the candidates when pα1, α2, α3q “ p1, 1, 3q

α4 ∆αi1
,αi2

,αi3

d a |B|
T Sufficient conditions

for m Ñ f
f hpfq

Mf M2 z Qpzq

every case ∆1,1,3 m ” 5 pmod 8q,
m ‰ 32u`1p3v ` 2q

p2x ` yq2 ` y2 ` 3z2 1
x2, 2, 3y

α4 “ 6 ∆1,1,6 m ” 0 pmod 8q,
m ‰ 32u`1p3v ` 1q

x2 ` y2 ` 6t2 1
x1, 1, 6y

α4 “ 15 ∆1,1,15

8 1 8

¨

˝

8 0 0
0 7 ´5
0 3 7

˛

‚

m ą 9,
m ” 1 pmod 8q,
m ‰ 32u`1p3v ` 1q

p2x ` yq2 ` y2 ` 15t2 2

x2, 2, 15y x1, 6, 10y
˘p1, 0, 0q 1

7. Proof of Theorem 1.6

We give a proof of Theorem 1.6. For positive integers α1, . . . , αk pk ě

1q, assume that a sum ∆α1,...,αk
of triangular numbers is almost universal

with one exception 2. Without loss of generality, we may assume that α1 ď

¨ ¨ ¨ ď αk. From the definition of the candidate of almost universal sums of
triangular numbers with one exception, one may easily check that ∆1 is the
unique candidate of unary almost universal sums of triangular numbers with
one exception 2. Note that T1p∆1q “ 2 and T2p∆1q “ 4. Since ∆1,1 and ∆1,2

represent 2, there are exactly two candidates

∆1,3 and ∆1,4

of binary almost universal sums of triangular numbers with one exception 2.
Note that

T2p∆α1,α2
q “

#

5 if pα1, α2q “ p1, 3q,

8 if pα1, α2q “ p1, 4q.

Therefore, there are exactly 8 candidates

∆1,3,3, ∆1,3,4, ∆1,3,5, ∆1,4,4, ∆1,4,5, ∆1,4,6, ∆1,4,7, and ∆1,4,8

of ternary almost universal sums of triangular numbers with one exception 2.
If ∆α1,α2,α3

‰ ∆1,4,5, then the second truants of the above candidates are

T2p∆α1,α2,α3
q “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

5 if pα1, α2, α3q “ p1, 3, 3q,

11 if pα1, α2, α3q “ p1, 3, 4q,

7 if pα1, α2, α3q “ p1, 3, 5q,

20 if pα1, α2, α3q “ p1, 4, 4q,

8 if pα1, α2, α3q “ p1, 4, 6q,

9 if pα1, α2, α3q “ p1, 4, 7q,

16 if pα1, α2, α3q “ p1, 4, 8q.
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On the other hand, we checked that ∆1,4,5 represents all nonnegative integers
up to 107 except 2. We conjectured that the sum ∆1,4,5 of triangular numbers
is almost universal with one exception 2 (see Conjecture 1.5). Note that there
are no ternary almost universal sums of triangular numbers with one exception
1, 4, 5, and 8 (see Theorems 1.1, 1.2, 1.3, and 1.4). Therefore, ∆1,4,5 is the
unique candidate of ternary almost universal sums of triangular numbers with
one exception. In this section we assume that Conjecture 1.5 is true.

Continuing on with a similar escalation method in the proof of Theorem 1.1,
we find all candidates of 34 quaternary and 37 quinary proper almost universal
sums of triangular numbers with one exception 2 (see Table 15).

Table 15. Proper almost universal sums with one exception 2

Sums Candidates Conditions on αk

∆α1
α1 “ 1 α1 ‰ 1

∆1,α2
α2 “ 3, 4 α2 ‰ 3, 4

∆1,3,α3
3 ď α3 ď 5 α4 ‰ 3, 4, 5

∆1,4,α3
4 ď α3 ď 8 α4 ‰ 4, 6, 7, 8

∆1,4,5,α4
α4 ě 5 α4 ‰ 5:, 6:, . . .

∆1,3,3,α4 3 ď α4 ď 5 α4 ‰ 3, 4

∆1,3,4,α4
4 ď α4 ď 11 α4 ‰ 5:, 9

∆1,3,5,α4
5 ď α4 ď 7 α4 ‰ 5

∆1,4,4,α4 4 ď α4 ď 20 α4 ‰ 5:, 15, 18

∆1,4,6,α4
6 ď α4 ď 8 α4 ‰ 6

∆1,4,7,α4
7 ď α4 ď 9 α4 ‰ 7

∆1,4,8,α4 8 ď α4 ď 16 α4 ‰ 14, 15

∆α1,α2,α3,α4,α5
∆α1,α2,α3,α4

is a candidate, α5 ‰ α:
4, α4 ` 1:, . . .

T2p∆α1,α2,α3,α4
q “ 8, α5 ě α4

∆1,3,3,3,α5 3 ď α5 ď 5 α5 ‰ 3, 5:

∆1,3,3,4,α5
4 ď α5 ď 29 α5 ‰ 4:, 5:, 6:, 7:, 8:, 10:,

11:, 27

∆1,3,4,9,α5
9 ď α5 ď 11 α5 ‰ 9, 10:, 11:

∆1,3,5,5,α5 5 ď α5 ď 7 α5 ‰ 5, 6:, 7:

∆1,4,4,15,α5
15 ď α5 ď 35 α5 ‰ 16:, 17:, 19:, 20:, 33

∆1,4,4,18,α5
18 ď α5 ď 20 α5 ‰ 18, 19:, 20:

∆1,4,6,6,α5 6 ď α5 ď 8 α5 ‰ 6, 7:, 8:

∆1,4,7,7,α5
7 ď α5 ď 9 α5 ‰ 7, 8:, 9:

∆1,4,8,14,α5
14 ď α5 ď 16 α5 ‰ 14, 16:

∆1,4,8,15,α5 15 ď α5 ď 17 α5 ‰ 15, 16:

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

2 is a candidate, αk ‰ α:

k´1, αk´1 ` 1:, . . .

T2p∆α1,...,αk´1
q “ 8, αk ě αk´1

∆α1,...,αk
pk ě 6q ∆α1,...,αk´1

is a candidate, αk ‰ αk´1 ` ℓ pℓ “ 0, 1:, 2:q

T2p∆α1,...,αk´1
q ‰ 8,

αk´1 ď αk ď αk´1 ` 2
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Table 16. Data for the proof of the candidates when pα1, α2, α3q “ p1, 3, 3q

∆αi1
,αi2

,αi3 Sufficient conditions for m Ñ f
f hpfq

∆1,3,3
m ” 7 pmod 8q, m ‰ 32up3v ` 2q

p2x ` yq2 ` 3y2 ` 3z2 1

Table 17. Data for the proof of the candidates when pα1, α2, α3q “ p1, 3, 4q

α4 ∆αi1
,αi2

,αi3 Sufficient conditions for m Ñ f
f hpfq

α4 ı 0 pmod 3q ∆1,3,4
m ” 0 pmod 8q,m ı 0 pmod 3q

p4x ` yq2 ` 3y2 ` 4z2 1

α4 “ 6 ∆1,3,6
m ” 2 pmod 8q,m ‰ 32up3v ` 2q

p4x ` yq2 ` 3y2 ` 6t2 1

Table 18. Data for the proof of the candidates when pα1, α2, α3q “ p1, 3, 5q

∆αi1 ,αi2 ,αi3

d a |B|
T Sufficient conditions

for m Ñ f
f hpfq

Mf M2 z Qpzq

∆1,3,5

8 1 4

¨

˚

˝

8 0 0

0 8 4

0 ´4 6

˛

‹

‚

m ą 1,

m ” 1 pmod 8q,

m ı 0 pmod 5q

p2x ` yq2 ` 3y2 ` 5z2 2
˜

4 2

2 4

¸

K x5y x1y K

˜

8 2

2 8

¸

˘p1, 0, 0q 1

Table 19. Data for the proof of the candidates when pα1, α2, α3q “ p1, 4, 4q

α4 ∆αi1
,αi2

,αi3

d a |B|
Sufficient conditions

for m Ñ f
f hpfq

Mf M2

α4 ı 0 pmod 3q ∆1,4,4

3 0, 2 0
m ” 1 pmod 8q,

m ” 0, 2 pmod 3q

p2x ` yq2 ` 4y2 ` 4z2 2
˜

4 2

2 5

¸

K x4y x1, 4, 16y

α4 ” 0 pmod 3q ∆1,4,4

7
0, 3,

5, 6
0

m ” 1 pmod 8q,

m ” 0, 3, 5, 6 pmod 7q

p2x ` yq2 ` 4y2 ` 4z2 2
˜

4 2

2 5

¸

K x4y x1, 4, 16y
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Table 20. Data for the proof of the candidates when pα1, α2, α3q “ p1, 4, 6q

∆αi1
,αi2

,αi3 Sufficient conditions for m Ñ f
f hpfq

∆1,4,6
m ” 3 pmod 8q, m ı 0 pmod 3q

x2 ` 4y2 ` 6z2 1

Table 21. Data for the proof of the candidates when pα1, α2, α3q “ p1, 4, 7q

α4 ∆αi1 ,αi2 ,αi3

d a |B|
T Sufficient conditions

for m Ñ f
f hpfq

Mf M2 z Qpzq

α4 “ 8 ∆1,4,8

3 1 2

¨

˚

˚

˚

˝

3 0 0

0 1 ´8

0 1 1

˛

‹

‹

‹

‚

m ą 1,

m ” 5 pmod 8q,

m ” 1 pmod 3q or

m ” 2, 3 pmod 5q or

m ” 0 pmod 15q

p2x ` tq2 ` 4y2 ` 8t2 2

¨

˚

˚

˚

˝

4 0 2

0 4 0

2 0 9

˛

‹

‹

‹

‚

x1, 4, 32y

˘p1, 0, 0q 1

5 2, 3 2

¨

˚

˚

˚

˝

3 ´8 0

2 3 0

0 0 5

˛

‹

‹

‹

‚

˘p0, 0, 1q 32

15 0 0

α4 “ 9 ∆1,4,9 3 1 0

m ” 6 pmod 8q,

m ” 1 pmod 3q or

m ” 1, 4 pmod 5q or

m ” 0, 10, 30, 35,

40, 50 pmod 55q

x2 ` 4y2 ` 9t2 2

5 1, 4 2

¨

˚

˚

˚

˝

4 ´3 0

3 4 0

0 0 5

˛

‹

‹

‹

‚

x1, 4, 9y x1, 1, 36y ˘p0, 0, 1q 36

55
0, 10, 30

35, 40, 50
0

Since the proof of almost universality of each candidate is quite similar to
the proof of Theorem 1.1, we only provide all parameters for the computations
for representations of the ternary form f (see Tables 16, 17, 18, 19, 20, 21 and
22).
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Table 22. Data for the proof of the candidates when pα1, α2, α3q “ p1, 4, 8q

α4 ∆αi1
,αi2

,αi3

d a |B|
T Sufficient conditions

for m Ñ f
f hpfq

Mf M2 z Qpzq

α4 ‰ 9, 10, 12 ∆1,4,8

3 1 2

¨

˚

˝

3 0 0

0 1 ´8

0 1 1

˛

‹

‚

m ą 1,

m ” 5 pmod 8q,

m ” 1 pmod 3q or

m ” 2, 3 pmod 5q or

m ” 0 pmod 15q

p2x ` zq2`4y2`8z2 2

¨

˚

˝

4 0 2

0 4 0

2 0 9

˛

‹

‚

x1, 4, 32y

˘p1, 0, 0q 1

5 2, 3 2

¨

˚

˝

3 ´8 0

2 3 0

0 0 5

˛

‹

‚

˘p0, 0, 1q 32

15 0 0

α4 “ 9 ∆1,4,9 3 1 0

m ” 6 pmod 8q,

m ” 1 pmod 3q or

m ” 1, 4 pmod 5q or

m ” 0, 10, 30, 35,

40, 50 pmod 55q

x2 ` 4y2 ` 9t2 2

5 1, 4 2

¨

˚

˝

4 ´3 0

3 4 0

0 0 5

˛

‹

‚

x1, 4, 9y x1, 1, 36y ˘p0, 0, 1q 36

55
0, 10, 30

35, 40, 50
0

α4 “ 10 ∆4,8,10

3 1 2

¨

˚

˝

2 ´3 1

3 0 3

0 0 ´3

˛

‹

‚

m ” 6 pmod 8q,

m ı 0 pmod 5q,

m ” 1 pmod 3q or

m ” 0 pmod 21q or

m ” 1, 2, 4 pmod 7q

4p2y`zq2`8z2`10t2 2

x10y K

˜

12 4

4 12

¸

¨

˚

˝

6 ´2 2

´2 6 2

2 2 42

˛

‹

‚

˘p1, 1,´2q 160

7 1, 2, 4 2

¨

˚

˝

6 1 12

3 4 ´8

´2 2 3

˛

‹

‚

˘p1, 1, 0q 8

21 0 0

α4 “ 12 ∆1,4,12

5 2, 3 2

¨

˚

˝

3 0 ´16

0 5 0

1 0 3

˛

‹

‚

m ” 1 pmod 8q,

m ı 0 pmod 3q,

m ” 2, 3 pmod 5q

p2x`yq2`4y2`12t2 2
˜

4 2

2 5

¸

K x12y x1, 12, 16y
˘p0, 1, 0q 12
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