• Title/Summary/Keyword: Q-module

Search Result 152, Processing Time 0.023 seconds

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES

  • Lee, Sang-Cheol;Varmazyar, Rezvan
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.435-447
    • /
    • 2012
  • Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever $I^nK{\subseteq}Q$, where $I{\subseteq}h(R)$, n is a positive integer, and $K{\subseteq}h(M)$, then $IK{\subseteq}Q$. We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if grad$(Q){\cap}h(M)=Q+{\cap}h(M)$. Furthermore if M is finitely generated then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if (grad(Q)$\cap$h(M))n(grad$(0_M){\cap}h(M)$) = (Q$\cap$h(M))n(grad$(0_M){\cap}Q{\cap}h(M)$). Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that Q + K $\neq$ M and $Q{\cap}K{\subseteq}M_g$ for all $g{\in}G$, then we prove that Q + K is almost semiprime in M.

Understanding and Designing Teachable Agent (교수가능 에이전트(Teachable Agent)의 개념적 이해와 설계방안)

  • 김성일;김원식;윤미선;소연희;권은주;최정선;김문숙;이명진;박태진
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.3
    • /
    • pp.13-21
    • /
    • 2003
  • This study presents a design of Teachable Agent(TA) and its theoretical background. TA is an intelligent agent to which students as tutors teach, pose questions, and provide feedbacks using a concept map. TA consists of four independent Modules, Teach Module, Q&A Module, Test Module, and Resource Module. In Teach Module, students teach TA by constructing concept map. In Q&A Module, both students and TA ask questions and answer questions each other through an interactive window. To assess TA's knowledge and provide feedback to students, Test Module consists of a set of predetermined questions which TA should pass. From Resource Module, students can search and look up important information to teach, ask questions, and provide feedbacks whenever they want. It is expected that TA should provide student tutors with an active role in learning and positive attitude toward the subject matter by enhancing their cognition as well as motivation.

  • PDF

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES

  • Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.323-334
    • /
    • 2008
  • We define injective and projective representations of quivers with two vertices with n arrows. In the representation of quivers we denote n edges between two vertices as ${\Rightarrow}$ and n maps as $f_1{\sim}f_n$, and $E{\oplus}E{\oplus}{\cdots}{\oplus}E$ (n times) as ${\oplus}_nE$. We show that if E is an injective left R-module, then $${\oplus}_nE{\Longrightarrow[50]^{p_1{\sim}p_n}}E$$ is an injective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $p_i(a_1,a_2,{\cdots},a_n)=a_i,\;i{\in}\{1,2,{\cdots},n\}$. Dually we show that if $M_1{\Longrightarrow[50]^{f_1{\sim}f_n}}M_2$ is an injective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are injective left R-modules. We also show that if P is a projective left R-module, then $$P\Longrightarrow[50]^{i_1{\sim}i_n}{\oplus}_nP$$ is a projective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $i_k$ is the kth injection. And if $M_1\Longrightarrow[50]^{f_1{\sim}f_n}M_2$ is an projective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are projective left R-modules.

  • PDF

The study on high speed A/D conversion implementation employing I/Q compensating algorithm for 3-D radar signal processor (I/Q 보정기능을 갖는 3차원 레이더 신호처리기용 고속 A/D 변환 기법 연구)

  • 조명제;김수중
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.67-76
    • /
    • 1997
  • In radar signal processing, an A/D converter with sufficient dynamic range and high sampling speed is required to detect the weakest target signals in heavy clutter and ECM environments. As the sampling frequency increases, the amount of digital data transfered to the signal processing module is also increased. To overcome these massive data transfer burden, we need an A/D conversion module with an enough data transfer rate. In this paper, we proposed an implementation scheme of a new A/D conversio module that can be used in multi-mode 3-D phased array radar signal processing system, and evaluated the performance. The proposed A/D conversion module is implemented with a standard A/D converter and a 6U-standard VME bus.

  • PDF

Design of High Repetition Nd:YAG Laser Transmitter Module for Rangefinder (거리측정용 고반복 Nd:YAG 레이저 발진부 설계)

  • Park, Y.C.;Choi, Y.S.;Kim, H.K.;Kwon, W.G.;Kang, E.C.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.460-463
    • /
    • 1993
  • In this paper, The laser transmitter module is designed as the subsystem of the high repetitive laser rangefinder. The module consists of high voltage power supply, high voltage control circuits, high voltage discharger, electro-optic Q-switch driver, and laser resonator. The high voltage power supply is composed of 2-phase flyback converter. And it has 220W power level and 78% conversion efficiency. From the Q-switch driver of the crossed porro resonator, the phase retardation voltage is switched from 600V to -1500V with 200ns falling time. The module can be operated up to 15Hz. And it generates the laser pulse which has 20ns width and 80mJ.

  • PDF

Mixed Convection Transport from a Module on the Bottom Surface of Three Dimensional Channel (3차원 채널 밑면에 탑재된 모듈로부터의 혼합대류열전달)

  • Lee, Jin-Ho;Park, Sang-Hee;Riu, Kap-Jong;Bang, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.632-639
    • /
    • 2000
  • Conjugate heat transfer from a heat generating module ($31{\times}31{\times}7mm^3$) bonded through the module support on the floor of a parallel-plate channel(20mm high, 400mm wide, and 800mm long) to mixed convective air flow(0.2${\sim}$0.9m/s) is studied experimentally. The input power to the module is changed in a range 1.0${\sim}$4.5W, the floor thickness 0.2${\sim}$5mm, and the thermal resistance of module support, Rc:=0.06, 1.03 and 82.0K/W. Thermal conductance(Uc) of the board and convective thermal conductance($U_A$) from the module were derived, and the effect of V; Rc and t on Uc was investigated. It is found that the conjugate conductance (Uc) and the conductive heat transfer ratio ($Q_B$/Q) depend on the thermal resistance of the module support, the air velocity and the board thickness. The change of the module support resistance and the board thickness helps to elucidate the relative significance of heat transfer paths through the module support, the board, and from the board surface to the air. Additional information is investigated about the dependence of the heat transfer rate on the mixed convection parameter.

A study on the mixed-convection heat transfer characteristics of a simulated module on the bottom in the inclined channel (경사진 채널밑면에 탑재된 모사모듈의 혼합대류열전달 특성 연구)

  • Ryu, Kap-Jong;Lee, Jin-Ho;Jang, Jun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.433-439
    • /
    • 2001
  • An experimental study was carried out on the characteristics of the mixed-convection heat transfer from a protruding heat source module which had uniform heat flux and was located on a flat plate in the inclined channel. The effects of the inclined channel(${\varphi}=0{\sim}90^{\circ}$) was studied for the input power($Q=3,\;7W$) and inlet air velocities($V_{i}=0.1{\sim}0.9m/s$). Experimental results indicate that the input power was most effective parameter on the temperature differences between inlet air and module. The effects of the inclined angle was negligible when the inlet velocities were above 0.5m/s and 0.9m/s at Q = 3W, 7W respectively. As the inclined angle of the channel increases, the temperatures of the module are decreased. So we obtained the best condition on the adiabatic board at the vertical channel.

  • PDF

Design of Q-band Mode Converter with the Discontinuity Compensation and Its Application to Waveguide Mixer Module (불연속을 보상한 Q밴드 모드 변환기의 설계 및 도파관 혼합기 모듈 제작에의 응용)

  • 한상은;이종환;염경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1198-1206
    • /
    • 2003
  • In this paper, a MMIC waveguide mixer module based upon the novel suggested mode converter for wave-guide-to-microstrip transition was fabricated and measured. The insertion and return losses of the mode converter was optimized by compensating the discontinuity effect between ridge and microstrip with the modification of 50 $\Omega$ microstrip line pattern. Due to the low loss nature of the mode converter, a millimeter wave MMIC mixer chip can be successfully applied as a waveguide module for mmW waveguide communication system. The measured results of the module showed the successful MMIC chip application in waveguide and the negligible degradation of the supplied chip specification.