• Title/Summary/Keyword: Q-matrix

Search Result 292, Processing Time 0.024 seconds

ON CHARACTERIZATIONS OF SOME LINEAR COMBINATIONS INVOLVING THE MATRICES Q AND R

  • Ozdemir, Halim;Karakaya, Sinan;Petik, Tugba
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.235-249
    • /
    • 2020
  • Let Q and R be the well-known matrices associated with Fibonacci and Lucas numbers, and k, m, and n be any integers. It is mainly established all solutions of the matrix equations c1Qn + c2Qm = Qk, c1Qn + c2Qm = RQk, and c1Qn + c2RQm = Qk with unknowns c1, c2 ∈ ℂ*. Moreover, using the obtained results, it is presented many identities, some of them are available in the literature, and the others are new, related to the Fibonacci and Lucas numbers.

THE CONDITION NUMBERS OF A QUADRATIC MATRIX EQUATION

  • Kim, Hye-Yeon;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • v.29 no.3
    • /
    • pp.327-335
    • /
    • 2013
  • In this paper we consider the quadratic matrix equation which can be defined by $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown complex matrix, and A, B and C are $n{\times}n$ given matrices with complex elements. We first introduce a couple of condition numbers of the equation Q(X) and present normwise condition numbers. Finally, we compare the results and some numerical experiments are given.

A Study of General AC Machine Modeling with Matrix Vector Using DQ Transformation

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.98-104
    • /
    • 2013
  • AC machines are in wide use in industry and d-q transformation from 3 phase of a, b, c is commonly used to analyze these kinds of machines. The equivalent circuits of d and q axis are, however, generally cross coupled and difficult to analyze. In this study, a modeling technique of AC machine including induction and PM synchronous motors using matrix vector is proposed. With that model, it can not only explain the AC machines physically but also make it simple to analyze them. The separating process of d and q components is not needed in this model and this model can be applied to analyze asymmetric motors like IPMSM machine. With this technique, the model becomes simple, easy to understand physically, and yields results that are the same as those from other models. These simulation results of the proposed model for induction motor are compared with those of other models to verify the method proposed.

An Efficient Method to Compute a Covariance Matrix of the Non-local Means Algorithm for Image Denoising with the Principal Component Analysis (영상 잡음 제거를 위한 주성분 분석 기반 비 지역적 평균 알고리즘의 효율적인 공분산 행렬 계산 방법)

  • Kim, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • This paper introduces the non-local means (NLM) algorithm for image denoising, and also introduces an improved algorithm which is based on the principal component analysis (PCA). To do the PCA, a covariance matrix of a given image should be evaluated first. If we let the size of neighborhood patches of the NLM S × S2, and let the number of pixels Q, a matrix multiplication of the size S2 × Q is required to compute a covariance matrix. According to the characteristic of images, such computation is inefficient. Therefore, this paper proposes an efficient method to compute the covariance matrix by sampling the pixels. After sampling, the covariance matrix can be computed with matrices of the size S2 × floor (Width/l) × (Height/l).

NEWTON'S METHOD FOR SYMMETRIC AND BISYMMETRIC SOLVENTS OF THE NONLINEAR MATRIX EQUATIONS

  • Han, Yin-Huan;Kim, Hyun-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.755-770
    • /
    • 2013
  • One of the interesting nonlinear matrix equations is the quadratic matrix equation defined by $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix, and A, B and C are $n{\times}n$ given matrices with real elements. Another one is the matrix polynomial $$P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_m=0,\;X,\;A_i{\in}\mathbb{R}^{n{\times}n}$$. Newton's method is used to find the symmetric and bisymmetric solvents of the nonlinear matrix equations Q(X) and P(X). The method does not depend on the singularity of the Fr$\acute{e}$chet derivative. Finally, we give some numerical examples.

Comparative Quantification of LacZ (β-galactosidase) Gene from a Pure Cultured Escherichia coli K-12

  • Han, Ji-Sun;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • Escherichia coli K-12 (E. coli K-12) is a representative indicator globally used for distinguishing and monitoring dynamic fates of pathogenic microorganisms in the environment. This study investigated how to most critically quantify lacZ ($\beta$-galactosidase) gene in E. coli K-12 by two different real-time polymerase chain reaction (real-time PCR) in association with three different DNA extraction practices. Three DNA extractions, i.e., sodium dodecyl sulfate (SDS)/proteinase K, magnetic beads and guanidium thiocyanate (GTC)/silica matrix were each compared for extracting total genomic DNA from E. coli K-12. Among them, GTC/silica matrix and magnetic beads beating similarly worked out to have the highest (22-23 ng/${\mu}L$) concentration of DNA extracted, but employing SDS/proteinase K had the lowest (10 ng/${\mu}L$) concentration of DNA retrieved. There were no significant differences in the quantification of the copy numbers of lacZ gene between SYBR Green I qPCR and QProbe-qPCR. However, SYBR Green I qPCR obtained somewhat higher copy number as $1{\times}10^8$ copies. It was decided that GTC/silica matrix extraction or magnetic beads beating in combination with SYBR Green I qPCR can be preferably applied for more effectively quantifying specific gene from a pure culture of microorganism.

EXTREME PRESERVERS OF RANK INEQUALITIES OF BOOLEAN MATRIX SUMS

  • Song, Seok-Zun;Jun, Young-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.643-652
    • /
    • 2008
  • We construct the sets of Boolean matrix pairs, which are naturally occurred at the extreme cases for the Boolean rank inequalities relative to the sums and difference of two Boolean matrices or compared between their Boolean ranks and their real ranks. For these sets, we consider the linear operators that preserve them. We characterize those linear operators as T(X) = PXQ or $T(X)\;=\;PX^tQ$ with appropriate invertible Boolean matrices P and Q.

  • PDF

Rank-preserver of Matrices over Chain Semiring

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • For a rank-1 matrix A, there is a factorization as $A=ab^t$, the product of two vectors a and b. We characterize the linear operators that preserve rank and some equivalent condition of rank-1 matrices over a chain semiring. We also obtain a linear operator T preserves the rank of rank-1 matrices if and only if it is a form (P, Q, B)-operator with appropriate permutation matrices P and Q, and a matrix B with all nonzero entries.

  • PDF

EXTREMAL CASES OF SN-MATRICES

  • Kim, Si-Ju;Choi, Tae-Young
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.659-670
    • /
    • 2008
  • We denote by $\mathcal{Q}$(A) the set of all real matrices with the same sign pattern as a real matrix A. A matrix A is an SN-matrix provided there exists a set S of sign pattern such that the set of sign patterns of vectors in the -space of $\tilde{A}$ is S, for each ${\tilde{A}}{\in}\mathcal{Q}(A)$. Some properties of SN-matrices arc investigated.