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THE CONDITION NUMBERS OF A QUADRATIC MATRIX

EQUATION∗

Hye-Yeon Kim† and Hyun-Min Kim‡

Abstract. In this paper we consider the quadratic matrix equation which
can be defined by

Q(X) = AX2 +BX + C = 0,

where X is a n× n unknown complex matrix, and A,B and C are n× n

given matrices with complex elements. We first introduce a couple of

condition numbers of the equation Q(X) and present normwise condition
numbers. Finally, we compare the results and some numerical experi-
ments are given.

1. Introduction

In this paper, we consider some different typical condition numbers of the
quadratic matrix equation:

Q(X) = AX2 +BX + C = 0 (1)

where A,B,C ∈ Cn×n. If a matrix S satisfies the equation Q(S) = 0, then
S is called a solvent of Q(X). The condition number is important in numer-
ical sense because it provides information about sensitivity of the solution to
perturbations in the data. The theories for finding the condition number for
(1) were suggested by Davis [1]. He considered traditional condition numbers
which derived and expressed using norms. Also, the mixed perturbation analy-
sis was suggested by Skeel [6] and he obtained the mixed analysis for Gaussian
elimination. Higham and Kim [3] considered the componentwise perturbation
theory for the equation Q(X). Gohberg and Koltracht [2] obtained explicit
expressions for both mixed and componentwise condition numbers. For the
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generalized Sylvester equation, Lin and Wei [5] gave the mixed and compo-
nentwise condition numbers. In this work, we consider normwise condition
numbers for a solvent to the quadratic matrix equation (1).

2. Classical condition numbers

First, the Fréchet derivative of the quadratic matrix equation Q(X) in (1)
can be derived by

Q(X +H) = A(X +H)2 +B(X +H) + C
= Q(X) + ((AX +B)H +AHX) +AH2

= Q(X) +Q′(X)H +AH2.

By applying the Kronecker product A ⊗ B = (aijB) and the vec operator
property [4] to Q′(X)H , we can obtain

vec(Q′(X)H) = (ITn ⊗ (AX +B))vec(H) + (XT ⊗A)vec(H)
= [(ITn ⊗ (AX +B)) + (XT ⊗A)]vec(H).

We now introduce two results for finding the condition numbers of a solvent to
quadratic matrix equation Q(X) in (1).
Assumption.

(i) Let X be an exact solvent of Q(X) = AX2 +BX + C = 0,

(ii) Let X̂ = X +∆X be a solvent of the perturbed equation

Q̂(X̂) = ÂX̂2 + B̂X̂ + Ĉ = 0,

(iii) Â = A + ∆A, B̂ = B + ∆B, Ĉ = C + ∆C with ‖∆A‖F ≤ ε‖A‖F ,
‖∆B‖F ≤ ε‖B‖F , ‖∆C‖F ≤ ε‖C‖F ,

(iv) ‖Q′(X)−1‖F · ‖∆Q′(X)‖F ≤ k < 1, where ∆Q′(X) = Q̂′(X)−Q′(X)

Under the Assumption, we can get the following results on the error in X.

Theorem 2.1. [1] For sufficiently small ε, ‖∆X‖F ≤ γε, where

α =
2

1− k
‖Q′(X)−1‖F [‖A‖F · ‖X‖2F + ‖B‖F · ‖X‖F ],

β =
1 + ε

1− k
‖Q′(X)−1‖F · ‖A‖F ,

γ =
2α

1 +
√
1− 4αβε

= α+O(ε2).

Theorem 2.2. [3]
‖∆X‖F
‖X‖F

≤ Ψ(X)ε+O(ε2),

where

ε = ‖[α−1∆A, β−1∆B, γ−1∆C]‖F ,
Ψ(X) = ‖P−1[α(X2)T ⊗ In, βXT ⊗ In, γIn2 ]‖2/‖X‖F ,

P = ITn ⊗ (AX +B) +XT ⊗A.
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and ∆X is perturbation of X due to the perturbations ∆A,∆B,∆C of A,B,C.

3. Normwise condition numbers

We now consider normwise condition numbers. Let the mapping

ϕ : (A,B,C) 7→ vec(X)

where X is the solvent of equation Q(X) in (1). The normwise condition
numbers of the quadratic matrix equation can be defined by

κ1(ϕ) = lim
ε→0

sup
∆1≤ε

‖∆X‖F
ε‖X‖F

,

κ2(ϕ) = lim
ε→0

sup
∆2≤ε

‖∆X‖F
ε‖X‖F

and

κ3(ϕ) = lim
ε→0

sup
∆3≤ε

‖∆X‖F
ε‖X‖F

,

where ∆X is the perturbation of X due to the perturbations ∆A,∆B and ∆C
of A,B and C, and

∆1 =

∥

∥

∥

∥

[

‖∆A‖F
α

,
‖∆B‖F

β
,
‖∆C‖F

γ

]∥

∥

∥

∥

2

,

∆2 = max

{‖∆A‖F
α

,
‖∆B‖F

β
,
‖∆C‖F

γ

}

,

∆3 =
‖[‖∆A‖F , ‖∆B‖F , ‖∆C‖F ]‖2

‖[α, β, γ]‖2
,

for α = ‖A‖F , β = ‖B‖F , γ = ‖C‖F .

The next result shows upper bounds of each condition number.

Theorem 3.1. By the above notation, the normwise condition number of the

quadratic matrix equation are

(i) κ1(ϕ) ≤ ‖P−1S1‖2
‖X‖F

,

(ii) κ2(ϕ) ≤ min{κU (ϕ), κM (ϕ)},

(iii) κ3(ϕ) ≤ ‖P−1S2‖2
‖X‖F

(

‖A‖2F + ‖B‖2F + ‖C‖2F
)

1

2 ,

where
P = ITn ⊗AX +XT ⊗A+ ITn ⊗B,

S1 =
[

α(X2)T ⊗ In, βXT ⊗ In, γIn2

]

,

S2 =
[

(X2)T ⊗ In, XT ⊗ In, In2

]

,

κU (ϕ) =
u

‖X‖F
, κM (ϕ) =

m

‖X‖F
,
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and

u =
√
3‖P−1S1‖2,

m = α‖P−1[(X2)T ⊗ In]‖2 + β‖P−1[XT ⊗ In]‖2 + γ‖P−1‖2.

Proof. The perturbed equation of the quadratic matrix equation in (1) is

(A+∆A)(X +∆X)2 + (B +∆B)(X +∆X) + C +∆C = 0. (2)

Neglecting second-order terms in (2) we obtain the equation

AX∆X +A∆XX +B∆X = −∆AX2 −∆BX −∆C.

Applying the vec operator to both sides the equation can be written by

(ITn ⊗AX +XT ⊗A+ ITn ⊗B)vec(∆X)

= −((X2)T ⊗ In)vec(∆A) − (XT ⊗ In)vec(∆B) − (ITn ⊗ In)vec(∆C).

Let P = ITn ⊗AX +XT ⊗A+ ITn ⊗B then

Pvec(∆X) = −
[

α(X2)T ⊗ In, β2X
T ⊗ In, γ3In2

]





vec(∆A)/α
vec(∆B)/β
vec(∆C)/γ





= −S1r,

where

r =





vec(∆A)/α
vec(∆B)/β
vec(∆C)/γ



 .

Finally, we have the equation

vec(∆X) = −P−1S1r. (3)

By taking 2-norm we obtain

‖vec(∆X)‖2 = ‖∆X‖F ≤ ‖P−1S1‖2‖r‖2. (4)

If ‖r‖2 ≤ ε then

κ1(ϕ) = lim
ε→0

sup
∆1≤ε

‖∆X‖F
ε‖X‖F

≤ lim
ε→0

sup
∆1≤ε

‖P−1S1‖2‖r‖2
ε‖X‖F

≤ lim
ε→0

sup
∆1≤ε

‖P−1S1‖2ε
ε‖X‖F

=
‖P−1S1‖2
‖X‖F

.
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Now, let ε = max

{‖∆A‖F
α

,
‖∆B‖F

β
,
‖∆C‖F

γ

}

, then

‖∆X‖F ≤ ‖P−1S1‖2‖r‖2

= ‖P−1S1‖2
[‖∆A‖2F

α2
+

‖∆B‖2F
β2

+
‖∆C‖2F

γ2

]

1

2

≤
√
3ε‖P−1S1‖2 = εu.

(5)

And from (3),

vec(∆X) = −αP−1[(X2)T ⊗ In]
vec(∆A)

α
− βP−1[XT ⊗ In]

vec∆B

β

−γP−1In2

vec(∆C)

γ
.

Using ‖vec(A)‖2 = ‖A‖F ,

‖∆X‖F ≤ α‖P−1[(X2)T ⊗ In]‖2
∥

∥

∥

∥

vec(∆A)

α

∥

∥

∥

∥

2

+β‖P−1[XT ⊗ In]‖2
∥

∥

∥

∥

vec(∆B)

β

∥

∥

∥

∥

2

+δ3‖P−1In2‖2
∥

∥

∥

∥

vec(∆C)

γ

∥

∥

∥

∥

2

≤ α‖P−1[(X2)T ⊗ In]‖2
[‖∆A‖2F

α2

]

1

2

+β‖P−1[XT ⊗ In]‖2
[‖∆B‖2F

β2

]

1

2

+ γ‖P−1‖2
[‖∆C‖2F

γ2

]

1

2

≤
(

α‖P−1[(X2)T ⊗ In]‖2 + β‖P−1[XT ⊗ In]‖2 + β‖P−1‖2
)

max

{‖∆A‖F
α

,
‖∆B‖F

β
,
‖∆C‖F

δ3

}

= mε.
(6)

Then, (5) and (6) imply Theorem 2.3 (ii). Let ε =
‖[‖∆A‖F , ‖∆B‖F , ‖∆C‖F ]‖2

‖[‖A‖F , ‖B‖F , ‖C‖F ]‖2
then

κ3(ϕ) = lim
ε→0

sup
∆3≤ε

‖∆X‖F
ε‖X‖F

≤ lim
ε→0

sup
∆3≤ε

‖P−1S2‖2‖r‖2
ε‖X‖F

= lim
ε→0

sup
∆3≤ε

‖P−1S2‖2[‖A‖2F + ‖B‖2F + ‖C‖2F ]
1

2

ε‖X‖F
=

‖P−1S2‖2
‖X‖F

[‖A‖2F + ‖B‖2F + ‖C‖2F ]
1

2 .

�
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If we choose α = ‖A‖F , β = ‖B‖F , γ = ‖C‖F , then we have κ1(ϕ) ≤ κ2(ϕ) ≤
κ3(ϕ) by (3) and κ1(ϕ) is same to the result of Higham and Kim [3].

4. Numerical Experiments

In this section, we show and compare numerical experiments by applying our
results. All experiments are done in Matlab 7.1 and all iterations terminated
when the relative residual ρQ(Xk) satisfies

ρQ(Xk) =
‖fl(Q(Xi))‖F

‖A‖F‖Xk‖2F + ‖B‖F‖Xk‖F + ‖C‖F
≤ nε,

where ε = 1e− 016.
First, we consider a 2× 2 quadratic matrix equation with well-conditioned.

Example 4.1. The quadratic matrix equation is given by

Q1(X) = A1X
2 +B1X + C1

=

[

0.002 0
0 0.002

]

X2 +

[

−0.002 −0.006
−0.006 −0.002

]

X +

[

0 0.006
0.006 0

]

= 0.

Suppose that the equation perturbed with ∆A1 =

[

0.00050 0
0 0

]

, ∆B1 =
[

0 0
0 0.00050

]

, ∆C1 =

[

−0.41205 0
0.24 0.00050

]

respectively. Then using the

Newton’s method, we obtain the solvent matrix X̂ =

[

41 0
0 1

]

of the perturbed

equation

Q̂1(X̂) = (A1 +∆A1)X̂
2 + (B1 +∆B1)X̂ + (C1 +∆C1) = 0, (7)

where X̂ = X +∆X. Now we can get the condition number of (7). When we
use the result of Theorem 2.1, the upper bound of condition is 13274. Also
729.6705 is provided by Theorem 2.2. This example shows that the result of
Theorem 2.1 is sharper than Theorem 2.1. In this case, starting Newton’s

method with X0 =

[

0 0
0 0

]

, we have the results displayed in Table 1. Then

we can get the solvent matrix X̂ =

[

41 0
0 1

]

of (7) and since the perturbed

quadratic matrix equation Q̂1(X̂) = 10−18

[

0 0
0 0.2168

]

, X̂ is exact solvent of

Q̂1(X̂).
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No.iteration ρQ(Xk) of Newton’s Method

1 3.96e-002
2 6.42e-003
3 1.04e-003
4 1.58e-004
5 1.63e-005
6 3.40e-007
7 1.85e-010
8 1.10e-016

Table 1. Relative residual for problem (7) with Newton’s method

We now consider an example with 3 × 3 coefficient matrices. Through this
example, we see the necessity of the condition number.

Example 4.2. The quadratic matrix equation is given by

Q2(X) =





0.0430 0.7803 0.3667
0.3820 0.4279 0.9778
0.6368 0.1712 0.4593



X2 +





0.8541 0.9208 0.3445
0.1521 0.9804 0.2094
0.4425 0.4635 0.3162



X

+





0.4309 0.0000 −3.6673
−3.8202 0.0000 −9.7782
−6.3684 0.0000 −4.5933



 = 0.

(8)

By using Newton’s method, we get the solvent

X =





−1.06920 0.3590 −0.9020
−0.2692 0.1887 −0.4248
1.5866 −2.0719 0.9482





of Q2(X). Starting Newton’s method with X0 =





0 0 0
0 0 0
0 0 0



, we have the

results displayed in Figure 2. In this case, we expect that the condition number
of this problem is bad. That is, it is meaningful to calculating the condition
number.
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Figure 2. Convergence for the problem (8)

The following example, we consider the results of normwise condition num-
ber.

Example 4.3. The quadratic matrix equation Q3(X) with

A3 =





104 −1 0
0 −1 1
0 0 1



 , B3 =





0.5 1 0
0 0.5 1
104 0 0.5



 ,

and

C3 = 104





−3.3333 −0.0002 −0.0003
−0.0007 −0.0008 0.0003
−0.0003 0 −5.0003



 .

In this example, α = ‖A3‖F , β = ‖B3‖F , γ = ‖C3‖F .
κ1(ϕ) 1.4427e+ 04
κU
2 (ϕ) 2.4988e+ 04

κM
2 (ϕ) 2.5948e+ 04
κ3(ϕ) 4.5497e+ 04

Table 3. Condition numbers of Q3(X)

From Table 3, we can see that κ3(ϕ) is the largest normwise condition num-
ber.
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5. Conclusion

In this section, we give a summary of our works and compare numerical
experimental results. The quadratic matrix equation in (1) arises in some
applications. We introduced two conditioning analysis of quadratic matrix
equation. And we presented three kinds of normwise condition numbers.
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