• Title/Summary/Keyword: Putting Trajectory

Search Result 14, Processing Time 0.017 seconds

Analysis of Kinematic Variables according to Ground Slope Angle during Golf Putting (골프 퍼팅 시 지면 경사도에 따른 운동학적 변인 분석)

  • Park, Jun-Sung;Shin, Sung-Hoon;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Objective: The purpose of this study was to analyze kinematic variables according to ground slope angle during golf putting. Method: 26 collegiate golfers (age: 22.54±2.15 kg, height: 174.64±6.07 cm, weight: 71.35±9.27 kg, handicap: 5.11±4.50) were participated, and 8 motion capture cameras (250 Hz), Nexus, and Kwon3DXP software were used to collect data. It was performed repeated measures ANOVA and Bonferroni adjustment. Alpha set at .05. Results: Body alignments were not significantly different at address. Putter head trajectory and loft angle were significantly different, and AP direction of acceleration of putter head was significantly different. However, ML and SI direction of acceleration of putter head were not significantly different. Conclusion: Therefore, it was identified that ground slope angle was affected the kinematic variables during putting, and it will be performed that correlation analysis between putting success rate and kinematic variables according to ground slope angle during golf putting.

Kinematic Characteristics according to Types of Putter Head on Pro Golfer's 4 Meter Putts (프로골퍼의 4m 퍼팅시 퍼터 헤드형태에 따른 운동학적 특성)

  • Lee, Geun-Hyuk;So, Jae-Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.319-326
    • /
    • 2013
  • The objective of this study is to help golfers to select adequate putters and to provide golfers basic scientific data for improving athletic performance by showing differences of kinematic variables according to the shape of putter head. In this research three right-handed male pro-golfer who are listed at KPGA were studied and three video camera (GR-HD1KR, JVC, Japan) were used and recording speed was 60 frame/sec during the research. In this study kinematic variables were calculated using Kwon3D XP program and analysed on the 4 events and 3 phases. This study showed the following results : (1) The swing of heel-toe putter showed longer time than that of face balanced putter, and there are statistical significant difference of kinematic variables of each objective (2) As of the trajectory of putter head, heel-toe putter showed more approximating curve trajectory than that of in-between, face balanced putter on the X-axis (3) heel-toe putter showed longer distance follow-through than that of other putters by statistically significant difference on the Y-axis (4) Heel-toe putter showed longer distance swing trajectory over the ground than that of other putters by statistically significant difference on the Z-axis.

Kinematic Analysis of the Putter Head and Body Alignments during Short and Long Putts (숏 퍼팅과 롱 퍼팅 시 퍼터헤드와 신체 정열의 운동학적 분석)

  • Park, Tae-Jin;Youm, Chang-Hong;Park, Young-Hoon;Sun, Sheng;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.51-60
    • /
    • 2007
  • The purpose of this study was to kinematically analyze the differences between short(2.17 m) and long(10.94 m) putting stroke motions. Thirteen male professional golfers were participated in this study. Experiment was conducted on the artificial grass mat in the gymnasium. Kinematic data were collected by the 60 Hz Kwon3D motion analysis system. Differences were compared by SPSS paired t-test and one-way ANOVA. Duncan was used for post-hoc test and a=.05. The results were as follows: 1. Ground projected trajectory of the putter head were statistically straight during both short and long putts. 2. There was no consistent alignment tendency among shoulder, hip, and stance alignments. However stance alignment was consistent between short and long putts. Thus it is assumed that professional golfers align their body based on their stance alignment. 3. During putting, shoulder rotated not only up and down but also right and left. 4. Left and right elbow distance was maintained during all phases of the putts for both short and long putts. 5. Inter foot distance of long putting was longer than that of short putting.

A Study on Grip Force and Angular Kinematics during Golf Putting Stroke (그립악력과 각운동학을 이용한 골프 퍼팅 분석)

  • Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.125-131
    • /
    • 2007
  • The purpose of this study was to evaluate the difference in grip force and angular kinematic variables between elite (handicap${\leq}2$) and novice golfers. Three-dimensional motion analysis system with synchronized grip force measurement system was used. The participants consisted of two groups based on their playing ability: 10 elite golfers and 10 novice golfers. Each subject performed 5 putting strokes at the distance of 1, 3, and 5m with randomly selected order. During entire putting phase, elite group showed relatively constant grip force but novice group showed continuously increasing grip force pattern. There existed a clear difference in the trajectory of shoulder line between two groups. As for novice group the rotational center did not converge into one point, for elite group the rotational center converged into precise single point. And there was a clear difference pattern in anterior-posterior directional movement at shoulder between two groups. These difference might be helpful for improving consistent putting skills.

Kinematics and Grip Forces of Professionals, Amateurs and Novices during Golf Putting (퍼팅 시 프로와 아마추어, 초보 골퍼사이의 운동학적 변인과 그립 악력 비교)

  • Choi, Jin-Seung;Kim, Hyung-Sik;Kang, Dong-Won;Kim, Han-Su;Oh, Ho-Sang;Seo, Jeong-Woo;Yi, Jeong-Han;Lim, Young-Tae;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • The purpose of this study was to compare the differences in kinematic variables and grip forces among professionals(PG), amateurs(AG), and novice group(NG) during golf putting. The participants consisted of 3 groups based on their playing ability: 8 professional golfers (handicap<5), 8 amateurs (handicap<18) and 8 novice. Each subject attempted 2.1m putts from the hole. 3D motion analysis system(Motion analysis Corp., USA) with 6 high speed cameras and grip force measurement system(Kim et al., 2007) were used to acquired kinematic and force data, respectively. To compare differences among groups, joint angles of upper limbs, trajectory and smoothness by jerk cost function(JC) of putter head and grip forces were used in this study. Results showed that there were significant differences among groups in most of variables such as joint angles, trajectory & smoothness of putter head, and distribution of grip force in both hands. In brief, we confirmed that putting stroke in PG was more accurate and smooth than that in other groups, especially NG, due to their well-controlled upper limbs and keeping grip forces constant in both hands. It can be concluded that due to skilled levels, fundamental differences of putting movement could be identified and these differences might be helpful for improving one's putting skills.

The Kinematic Analysis of Gliding Type and Delivery Phase in Each Trails during Shot-Putting - Focusing on Lee, Hyung-Keun, Player in Men's High School Youth Group - (고등부 남자 포환던지기 선수의 시기 별 글라이드 유형과 딜리버리 국면의 운동학적 분석 - 고등부 이형근 선수를 중심으로 -)

  • Kim, Tae-Sam;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • The purpose of this study was to provide information about kinematic variables of the gliding and delivery motion of Hyung-Keun Lee, a high school shot putter who was ranked 1st at the 2011 National Sports Festivals. Three-Dimensional motion analysis using a system of 4 video cameras at a sampling frequency of 60 Hz was conducted during shot-putting events at the 2011 National Sports Festivals. During the gliding and delivery phase of the player the results showed following characteristics; 1) The gliding technique types of the player appeared to be the short-long technique as the gliding and stance length ratio were $42.3{\pm}3.87$ % and $57.7{\pm}3.87$ %, respectively. In addition, the trajectory of shots during the gliding and delivery phase showed different trajectory patterns with "S-shaped" type of elite players due to the deviation from a central axis of the APSS (athletic-plus shot system). 2) The horizontal velocity of COG made from gliding should maintain the velocity during transition and release phase, but the player showed a small momentum for a gradual decrease of velocity. 3) Therefore, the player requires to adjust an appropriate ratio between gliding and stance length with a strong muscle power at the trunk, throwing arm, and the lower extremity during gliding and delivery phase.

Optimal Design of a Four-bar Linkage Manipulator for Starfish-Capture Robot Platform (불가사리 채집용 4절 링크 매니퓰레이터의 최적 설계)

  • Kim, Jihoon;Jin, Sangrok;Kim, Jong-Won;Seo, TaeWon;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.961-968
    • /
    • 2013
  • In this paper, we propose an optimal design for starfish capturing manipulator module with four-bar linkage mechanism. A tool link with compliance is attached on the four-bar linkage, and the tool repeats detaching starfish from the ground and putting it into the storage box. Since the tool is not rigid and the manipulator is operating underwater, the trajectory of the tool tip is determined by its dynamics as well as kinematics. We analyzed the trajectory of the manipulator tool tip by quasi-static analysis considering both kinematics and dynamics. In optimization, the lengths of each link and the tool stiffness are considered as control variables. To maximize the capturing ability, capturing stroke of the four-bar manipulator trajectory is maximized. Reaction force and reaction moment, and other kinematic constraints were considered as inequality constraints.

X-Putt : A Golf Putting Training System based on Ultrasonic sensors (X-Putt : 초음파 센서 기반의 골프 퍼팅 훈련 시스템 설계와 구현)

  • Ahn, Jae-Gon;Na, Dae-Young;Lim, Young-Tae;Jeon, Heung-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.25-34
    • /
    • 2011
  • In this paper, we propose a new golf putting training system which we call "X-Putt". X-Putt analyzes putting strokes by measuring putter face angle and path. To do this, we improved the sonar-based localization scheme used by previous localization techniques. As a result, X-Putt can measure putter's location within the error range, ${\pm}0.9cm$ and putter face angle within ${\pm}1.5^{\circ}$. Additionally, we built an user application that has an easy-to-use interface for analyzing the strokes after training.

The Kinematic Difference According to Success and Failure of Shot-Putting - Focusing on Member of the National Team, Hwang, In-sung, Player - (남자 포환던지기 시 성공과 실패에 따른 운동학적 차이 - 국가대표 황인성 선수를 중심으로 -)

  • Ryu, Ji-Seon;Park, Jae-Myoung;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.161-171
    • /
    • 2011
  • The purpose of this study was to identify biomechanical characteristics of glide and delivery motion of In-Sung Hwang, player who is a member of the national team among the finalists in the men's shot put at the 2010 National Sports Festivals. Three-Dimensional motion analysis using a system of 3 video cameras at a sampling frequency of 60 Hz was performed for this study. During the glide and delivery phase the results showed following characteristics; 1) The glide type was suitable for the short-long technique, but the trajectory of shot at the glide and delivery phase showed a different trajectory pattern with "S-shaped" type of elite players due to many deviating from central axis of the APSS(athletic-plus shot system). 2) Left knee was more flexed during failed trials compared to successful trials but COG was higher. Therefore, the player showed less stability of COG as he may not get enough breaking force at the left foot. 3) Furthermore, it would be required to have strong muscle power at the trunk, throwing arm, and the lower extremity in order to achieve maintain a low projection angle of the release.

NURBS Interpolation Strategies of Complex Surfaces in High Speed Machining

  • Ameddah, Hacene;Assas, Mekki
    • International Journal of CAD/CAM
    • /
    • v.11 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • The increase in the productivity and the assurance of quality machining on the NC machines depends on, amongst other things, the perfection of the programming using adequate methods of interpolation. The programming language is until now based on the code ISO 6983 which defines the principles of the code G. This latter is not well adapted to the new strategies of machining imposed by the machining of complex surfaces and machining at high speed with the increasingly more severe requirements of precision. The CNC which adopt the interpolation of NURBS (Non Uniform Rational B-spline) are very rare (FANUC Siemens${\ldots}$). Based on the advantages of NURBS (continuity, flexibility, smoothing$.{\ldots}$), new formats G are currently developed but their use is still very limited. Our work consists on putting forward these new approaches of programming using the interpolation of NURBS. For this reason, a program capable to trace NURBS trajectories under Visual BASIC 6.0 was developed. This program was used thereafter in CAM software for the generation of NURBS formats like their new formats NC.

  • PDF