• Title/Summary/Keyword: Punching Shear

Search Result 216, Processing Time 0.027 seconds

Stability Investigation of a Foundation Located above Limestone Cavities Using Scaled Model Tests (석회암공동 상부 기초의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Heo, Seok
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.493-507
    • /
    • 2016
  • Scaled model tests were performed to investigate the stability of a foundation located above limestone cavities. Cavity shape was assumed to be an ellipse having 1/3 for the ratio of minor to major axis lengths. 12 different test models which have various depths, locations, inclinations, sizes and numbers of cavity were experimented and they were classified into 5 different groups. Crack initiation pressure, maximum pressure, deformation behaviors, failure modes and subsidence profiles of test models were obtained, and then the influences of those parameters on the foundation stability were investigated. No cavity model showed a general shear failure, whereas the models including various cavities showed the complicated three different failure modes which were only punching failure, both punching and shear failures, and double shear failure. The stability of foundation was found to be decreased as the cavity was located at shallower depth, the size and number of cavity were increased. Differential settlements appeared when the cavity was located under the biased part of foundation. Furthermore, subsidence profiles were found to depend on the distribution of underground cavities.

Estimating Ineffective Part of Critical Section for Punching Shear Strength of Flat Slabs with Openings (개구부가 있는 무량판 슬래브의 뚫림전단에 대한 위험단면 결손 산정)

  • Ha, Tae-Hun;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.370-373
    • /
    • 2006
  • According to current design provisions for shear strength of reinforced concrete slabs, critical slab sections around columns should be modified in the presence of openings in slabs to consider the effect of openings on the shear strength of slabs. Although the method of estimating the ineffective part of critical section due to openings are explained in codes, the real math for calculating it is somewhat complex and cumbersome. This paper classifies different cases of the location and geometry of columns and openings, respectively, and derives corresponding equations for estimating ineffective part of critical section for each case.

  • PDF

A Study on the Structural Performance of Slab-column Joint at Flat Plate Structure Using ECC (고인성 시멘트 복합재를 활용한 플랫플레이트 구조의 슬래브-기둥 접합부 구조성능 연구)

  • Choi, Kwang-Ho;Park, Byung-Chun;Choi, Sung-Woo;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.209-216
    • /
    • 2017
  • One of the important considerations in structural designing the flat plate system is ensuring the resistance to punching shear caused by axial loads and the ductile ability to follow horizontal deformation under earthquake. In this study, the ECC (Engineered Cementitious Composite) has been placed in the critical section zone of punching shear at slab-column joint to improve ductility and the advanced details of shear reinforced area nearby critical section zone has been developed using stud and steel fiber. The shear performance tests were performed on the specimens with parameters of fiber type mixed with ECC, stud and steel fiber set into the shear reinforced area in which the failure pattern, joint strength, displacement and strain of the specimen were compared and analyzed. The test results showed that the strength and ductility of specimens with ECC applied to joint were better than those of RC flat plate system. Also, the shear reinforcement effect of stud and the ductility improvement of steel fiber concrete were confirmed in the shear reinforcement area.

An Experimental Study on the Strength Evaluation of A1-5052 Tensile-Shear Specimens Using a Mechanical Press Joining Method (기계적 프레스 접합법을 이용한 A1-5052 인장-전단 시험편의 강도 평가에 관한 실험적 연구)

  • 임두환;이병우;류현호;김호경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2003
  • A mechanical press joining was investigated in ender for joining A1-5052 sheets for automobile body weight reduction. Static tensile and fatigue tests were conducted using tensile-shear specimens for evaluation of fatigue strength of the joint. During Tox joining process for A1-5052 plates, using the current sheet thickness and punch diameter, the optimal applied punching force was found to be 32 kN under the current joining condition. For the static tensile-shear experiment results, the fracture mode is classified into interface fracture mode, in which the neck area fractured due to influence of neck thickness, and pull-out fracture mode due to influence of plastic deformation of the joining area. And, during fatigue tests for the A1-5052 tensile shear specimens, interface failure mode occurred in the region of low cycle. The fatigue endurance limit approached to 6 percents of the maximum applied load, considering fatigue lifetime of $2.5\times10^6$ cycles.

Evaluation on Bearing Resistance of Transverse Members in Steel Strip Reinforcement using Pullout Tests and Theoretical Equations (인발시험과 이론식을 이용한 강재스트립 보강재에 설치된 지지부재의 지지저항 특성 평가)

  • Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon;Hong, Won-Pyo;Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, the pullout tests are conducted to evaluate pullout resistance of steel strip reinforcement with transverse members. The test results are compared with theoretical equations and then the failure mechanism of transverse members is evaluated. The bearing resistance stress(${\sigma}^{\prime}_b$) of transverse members, which is applied pullout force at 50mm displacement, is closed from punching shear failure to general shear failure. The behavior by increment of a number of transverse members became closer to general shear failure. The behavior of transverse members at maximum pullout force, which is closed to general shear failure, is indicated that it is unrelated to normal stress and a number of transverse members. However, if the allowable displacement of reinforced soil wall is considered, it is impossible to apply in design. The test results are compared with bearing resistance evaluations using Prandtl's plastic theory and cylindrical cavity expansion theory. The analysis results are indicated that the bearing resistance by pullout tests is closed to predicted result by Prandtl's plastic theory, which are located between general shear failure and punching shear failure.

  • PDF

Transmissibility of High-Strength Concrete Column Loads through Normal-Strength Concrete Slabs (일반 강도 콘크리트 슬래브를 통한 고강도 콘크리트 기둥의 축력 전달)

  • 윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.521-524
    • /
    • 1999
  • Twelve column specimens were tested in compression, six were slab-column specimens and six were isolated column specimens. The slab column specimens were first tested to punching shear failure before the columns of the specimens were loaded axially. The effects of confinement from the surrounding slab on the axial capacity of the columns was investigated. Other parameters investigated were the placement of fiber-reinforced concrete in the slab and the concentration of flexural reinforcement in the column vicinity.

  • PDF

A Experimental Application of Carbon Fiber Sheet for Strenthening Bridge Decks received fatigue loads (반복하중을 받는 교량바닥판의 보강을 위한 탄소섬유쉬트의 적용성에 대한 실험적 연구)

  • 심종성;오홍섭;김진하;김성엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.757-762
    • /
    • 2001
  • This study was performed experiment for strengthened bridge decks with isotropic carbon fiber sheets received fatigue loading, and compared with fatigue behavior of unstrengthened bridge decks. By the results, this study was examined effect of increasing strengthened to phase life cycles of bridge deck for fatigue loading and application of the punching shear theory of bridge deck strengthened by carbon fiber sheet.

  • PDF

Failure Mechanism for Pull-Out Capacity of Headed Reinforcement (Head Reinforcement 인발강도를 위한 파괴 메캐니즘)

  • 홍성걸;최동욱;권순영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.233-238
    • /
    • 2002
  • This study presents failure mechanisms for the pull-out strength of headed reinforcement for upper bound solution based on the limit theorem. The failure mechanisms to be presented follow the failure surface pattern of punching shear failure found in the joints of slab with a column. Several failure surfaces of the mechanisms have different characteristics for dissipation works and these mechanisms are able to interpret the role of bar details surrounding headed reinforcement.

  • PDF

Pre-fatigue Damage of the Strengthened Bridge Deck for Study on Fatigue Behavior (피로거동파악을 위한 성능향상된 교량상판의 사전피로손상의 고찰)

  • 심종성;오홍섭;김진하
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.697-700
    • /
    • 2000
  • Fatigue damage to reinforced concrete bridge decks have been found in many bridges. Failure mode of most reinforced concrete decks is caused by local punching shear rather than flexural moment due to cumulated damage. In this study, mechanical degradation of unstrengthened and strengthened bridge deck specimens is experimentally investigated. The unstrengthened deck specimens were damaged under the pulsating loading condition. After the test, deteriorated deck specimens were strengthened with Carbon Fiber Sheet, then loaded to observe the improvement of the fatigue behavior. It is shown that fatigue damaged specimens are similar to real bridge rather than static damaged specimens.

  • PDF

Lattice Shear Reinforcement for Slab-Column Connection Subjected to Unbalanced Moment (불균형모멘트를 받는 슬래브-기둥 접합부를 위한 래티스 전단 보강)

  • Park, Hong-Gun;Kim, You-Ni;Song, Jin-Kyu;Kim, Sun-Kyu;Lee, Chul-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.301-312
    • /
    • 2007
  • A slab-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In the present study, to investigate the earthquake resistance of newly developed lattice shear reinforcement, experimental study was performed for interior slab-column connections subjected to cyclic loading. For comparison, specimens with existing shear reinforcement method such as stud rail, shear band and stirrup were also tested. The test result showed that the structural capacity of the lattice shear reinforcement was superior to those of the existing methods and was greater than the code-specified strength. On the other hand, the existing methods did not significantly improve the shear strength of the specimens. The shear strengths of the existing methods were much less than the code-specified shear strength.