• Title/Summary/Keyword: Pulse design algorithm

Search Result 111, Processing Time 0.03 seconds

Design of Non-Parametric Detectors with MMSE (최소평균자승에러 알고리듬을 이용한 non-parametric 검파기 설계)

  • 공형윤
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.171-174
    • /
    • 1998
  • A class of non-parametric detectors based on quantized m-dimensional noise sample space is introduced. Due to assuming the nongaussian noise as a channel model, it is not easy to design the detector through estimating the unknown functional form of noise; instead equiprobably partitioning m-dimensional noise into a finite number of regions, using a VQ and quantiles obtained by RMSA algorithm is used in this paper to design detectors. To show the comparison of performance between single sample detector and system suggested here, Monte-Carlo simulations were used. The effect of signal pulse shape on the receiver performance is analyzed too.

  • PDF

Comparison of Algebraic design methodologies for Unknown Inputs Observer via Orthogonal Functions (대수적 미지입력관측기 설계를 위한 직교함수의 응용)

  • Ahn, P.;Lee, S.J.;Kim, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2543-2545
    • /
    • 2005
  • It is well known that the orthogonal function is a very useful to estimate an unknown inputs in the linear dynamic systems for its recursive algebraic algorithm. At this aspects, derivative operation(matrix) of orthogonal functions(walsh, block pulse and haar) are introduced and shown how it can useful to design an UIO(unknown inputs observer) design.

  • PDF

Implementation of High Reliable Fault-Tolerant Digital Filter Using Self-Checking Pulse-Train Residue Arithmetic Circuits (자기검사 Pulse별 잉여수연산회로를 이용한 고신뢰화 Fault Tolerant 디지털필터의 구성에 관한 연구)

  • 김문수;손동인;전구제
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.204-210
    • /
    • 1988
  • The residue number system offers the possibility of high-speed operation and error detection/correction because of the separability of arithmetic operations on each digit. A compact residue arithmetic module named the self-checking pulse-train residue arithmetic circuit is effectively employed as the basic module, and an efficient error detection/correction algorithm in which error detection is performed in each basic module and error correction is performed based on the parallelism of residue arithmetic is also employed. In this case, the error correcting circuit is imposed in series to non-redundant system. This design method has an advantage of compact hardware. Following the proposed method, a 2nd-order recursive fault-tolerant digital filter is practically implemented, and its fault-tolerant ability is proved by noise injection testing.

  • PDF

The Design of MRAC using Block Pulse Functions (블럭펄스함수를 이용한 MRAC설계)

  • Kim, Jin-Tae;Kim, Tai-Hoon;Ahn, Pius;Lee, Myung-Kyu;Shim, Jae-Sun;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2252-2254
    • /
    • 2001
  • This paper proposes a algebraic parameter determination of MRAC (Model Reference Adaptive Control) controller using block Pulse functions and block Pulse function's differential operation. Generally, adaption is performed by solving differential equations which describe adaptive low for updating controller parameter. The proposes algorithm transforms differential equations into algebraic equation, which can be solved much more easily in a recursive manner. We believe that proposes methods are very attractive and proper for parameter estimation of MRAC controller on account of its simplicity and computational convergence.

  • PDF

Optimum PI Controller Design for an Oil Cooler System Using GA (GA를 이용한 오일쿨러시스템의 최적 PI제어기 설계)

  • Jung, Young-Mi;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.28-34
    • /
    • 2014
  • This paper deals with optimum PI controller design using genetic algorithm to improve control performance and robustness for an oil cooler system. The optimum PI gain was found to minimize an object function, integrated absolute error, and to satisfy control design specifications such as overshoot and settling time based on practical transfer function of the oil cooler system. The control performance and robustness were investigated by comparing indicial responses and Bode diagram analysis with respect to three kinds of PI gains obtained from different gain decision manners. Moreover, the robustness against to input disturbances, sinusoidal wave form and abrupt single pulse, was evaluated. The computer simulation results showed that the suggested optimum gain can establish desirable control performance and strong robustness with easy design process.

Study on the Design Computing Model for SpO Extraction Algorithm on Pulse Oximetry (펄스 옥시메터의 산소포화도 추출 알고리즘을 위한 계산모델 설계에 관한 연구)

  • Kim, Yun-Yeong;Kim, Do-Cheol;Lee, Yun-Seon
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1998
  • This paper is based on the design and analysis computing model of oxygen saturation with the pulse oximeter using the integral ratio of pulsating components. In our proposed algorithm. we modeled the transmitted optical signal in fingertip or earlobe to DC component $A_{dc}$ pulsating component $A_a\;Sinwt$, noise component $A_{noise}$ and etc.. To separate the pulsating components and DC components efficiently, we defined the signal average to DC components. Also we presented the way to eliminate the noise using integral ratio. To acquire a linearity of correlation graph for pulsating components ratios and non invasive oxygen saturation. we intensively observed on the oxygen saturations in the range of 75-100% in consideration of the error range of simulator. Also, for real time processing we experimented on changing the period of area calculating cycle from 1 to 6. The functional evaluation of the algorithm is compared with the method using the amplitude ratio of pulsating components frequently seen with pulse oximeter. The result was that our algorithm with 4 cycles of area calculating cycle which considered to be best fit by 1% to the existing method. Moreover r , the decision coefficient showing the correlation of regression graph with real data, proved better result of 0.985 than 0.970.

  • PDF

Switched Reluctance Motor Design and Analysis with LabView Program (LabView를 이용한 Switched Reluctance Motor 설계기술 개발)

  • Shin, Pan-Seok;Otaduy, Pedro J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.21-23
    • /
    • 2001
  • A design and analysis program is proposed for switched reluctance motor using an analytical method and a CAD program LabVIEW. The algorithm uses conventional permeance method, in which flux linkages, inductances and torques are calculated numerically. In order to analyze a dynamic characteristics of the motor, voltage control scheme is fallen and a single pulse operation is applied. 2 SRM models are analyzed under the given specifications and constraints. The results compared with measured data.

  • PDF

Design of e-Learning System for Spectral Analysis of High-Order Pulse (고차원펄스 스펙트럼 분석을 위한 이러닝 시스템의 설계)

  • Oh, Yong-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.475-487
    • /
    • 2011
  • In this paper, we present a systematic method to derive spectrum of high-order pulse and a novel design of e-Learning system that deals with deriving the spectrum using concept-based branching method. Spectrum of high-order pulse can be derived using conventional methods including 'Consecutive Differentiations' or 'Convolutions', however, their complexity of calculation should be too high to be used as the order of the pulse increase. We develop a recursive algorithm according to the order of pulse, and then derive the formula of spectrum connected to the order with a newly designed look-up table. Moving along, we design an e-Learning content for studying the procedure of deriving high-order pulse spectrum described above. In this authoring, we use the concept-based object branching method including conventional page or title-type branching in sequential playing. We design all four Content-pages divided into 'Modeling', 'Impulse Response and Transfer Function', 'Parameters' and 'Look-up Table' by these conceptual objects. And modules and sub-modules are constructed hierarchically as conceptual elements from the Content-pages. Students can easily approach to the core concepts of the analysis because of the effects of our new teaching method. We offer step-by-step processes of the e-Learning content through unit-based branching scheme for difficult modules and sub-modules in our system. In addition we can offer repetitive learning processes for necessary block of given learning objects. Moreover, this method of constructing content will be considered as an advanced effectiveness of content itself.

Fabrication and Evaluation of Sensor for Measuring Pulse Wave Velocity using Piezo Film and Conductive Textile (압전 필름과 전도성 섬유를 이용한 맥파 전달 속도 측정을 위한 센서의 제작 및 성능평가)

  • Kim, Jung-Chae;Jee, Sun-Ha;Yoo, Sun-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • Arterial stiffness is causing the serious problems for human who is suffered from hypertension and metabolic syndrome. So it is important that measure the arterial stiffness for early prevention. Many researches point out that pulse wave velocity(PWV) is the reliable and simple method to predict arterial stiffness. In this paper, we developed the sensing parts that detect the pulse wave and ECG by using piezoelectric film and conductive textile with elastic band. Our system could detect 3ch pulse wave and ECG. Simultaneously, our algorithm extracts the features for calculating the delays among pulse waves. The delays are the significant parameter to estimate PWV, thus we design the experiment for evaluating the performance of our sensing parts. The reference is PP-1000(HanByul Meditech, Korea) that is good for performance evaluation. As a result, the start point of the pulse wave was the most reliable feature for comparing with PP-1000(r=0.691, P=0.00). The results between two operators showed that there is only a slight difference in the reproducibility of the devices. In conclusion, we assume that the suggested sensor could be more comfortable and faithful method for arterial stiffness.

Dynamic Stability Assessment of Pressure Hull in Deep Sea against Implosion Pressure Pulse (심해 환경 하에서 내파 충격파를 받는 내압 선체의 동적 좌굴 평가 기법)

  • Nho, In Sik;Cho, Sang Rai;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.198-206
    • /
    • 2020
  • In this study, the dynamic structural behavior of pressure vessels due to pressure pulse initiated by implosion of neighbouring airbacked equipments including Unmanned Underwater Vehicles (UUV), sensor system, and so on were dealt with for the structural design and safety assessment of pressure hulls of submarine. The dynamic buckling and collapse responses of pressure vessel in deep sea were investigated considering the effects of initial hydrostatic pressure and fluid-structure interactions. The governing equations for circular cylindrical shells were formulated theoretically assuming a relatively simple displacement fields and the derived nonlinear simultaneous ordinary differential equations were analysed by developed numerical solution algorithm. Finally, the introduced safety assessment procedures for the dynamic buckling behaviors of pressure hulls due to implosion pressure pulse were validated by comparing the theoretical analysis results with those of experiments for examples of simple cylinders.