86 .
WX 88-25-2 13

Implementation of High Reliable Fault-Tolerant Digital Filter Using

Self-Checking Pulse-Train Residue Arithmetic Circuits
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Abstract

The residue number system offers the possibility of high-speed operation and error detec-
tion/correction because of the separability of arithmetic operations on each digit. A compact
residue arithmetic module named the self-checking pulse-train residue arithmetic circuit is
effectively employed as the basic module, and an efficient error detection/correction algorithm
in which error detection is performed in each basic module and error correction is performed
based on the parallelism of residue arithmetic is also employed.

In this case, the error correcting circuit is imposed in series to non-redundant system. This
design method has an advantage of compact hardware. Following the proposed method, a
2nd-order recursive fault-tolerant digital filter is practically implemented, and its fault-tolerant
ability is proved by noise injection testing.
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any fault on the system, it will make a big
trouble. There is an obvious need for highly-
reliable digital signal processing systems.

The residue number system(RNS)[1-3] offers
the possibility of high-speed operation and
error detection/correction because of the
separability of arithmetic operations on each
digit. The implementation of digital filters
based on the residue number system has been
studied [8-10]. The ROM table-look-up method
is usually proposed for the implementation
of residue arithmetic circuits [4]. Much me-
mory is needed in this ROM method, so that
the hardware of the digital filter is increased.
Also, the error detection/correction based on
the RNS have been studied mainly from the
mathematical view point[5-7] and little atten-
tion has been given to the efficient hardware
implementation.

On the other hand, we have proposed a
compact residue arithmetic circuit named the
self-checking pulse-train residue arithmetic
circuit[ 10} in which the ring-counter[8] is used
as the major component and arithmetic opera-
tions are performed by counting pulse and code
conversion [8]. We have also proposed a new
efficient error detection and correction method
in which error detection is performed in each
self-checking pulse-train residue arithmetic
circuit and error correction is performed
based on the parallelism of residue arithme-
tic[9]. According to the proposed method,
a 2nd-order recursive fault-tolerant digital
filter is practically implemented and a noise
testing is done on the implemented digital
filter. In this case, the error correction circuit
is imposed in series to non-redundant system.
This design method has an advantage of com-
pact hardware. It is found that this hardware
complexity is 70% of the one of the conven-
tional tripple modular redundancy(TMR), and
the error detection/correction can be perfectly
performed under the condition of a single
noise injection.

II. Overview of the Self-checking Pulse-Train
Residue Arithmetic Circuit and its Error
Detection and Correction

Since the detailed explanation about the
RNS is found in[2], it will be discusse briefly

here.

In the residue number system, an integer
X is represented by Eqs. (1) and (2), where
my, My, .., My are moduli which are selected
from mutually prime integers[2].

X=(xl s X325 eeny XN) (l)
X;= X m, (=1, 2, ..., N) )
The symbol Ix| denotes the remainder of X,
when divided by the modulus. The dynamic

range of X represented by Eq. (1) is

0<x<M
M=m; m; ... my 3)

where X is a non-negative integer.

X Qe a4 qz Q3 Qe e Pm -1
0 1 0 0 0 O e 0
1 0 1 0 0 0 0
2 0 0 0 0 0
3 0 0 0 1 0 0
4 0 0 0 0 1 0
m- 1 0 0 0 0 0 1

(c) output signal

Fig. 1. State of the ring counter.

Addition and multiplication of residue num-
bers X, Y are given by

X+Y= (XIQYI!X2 ®y2,-'-,nNGBYN) (4)

X x Y= (x; Oyy, x; Oy, .., sy Oyy)  (5)
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where ® and ® are modulo—m; addition and

modulo—mi multiplication respectively on

each digit, as given by

Oy.= ix. +v. | m.
x;®y; .x1+y1|m1

xi@yi= |xi Y; |mi

Egs. (4) and (5) imply that addition and
multiplication in the residue number system
can be performed completely in parallel on
each digit.

Division in the residue number system is
very complex. Scaling[2], which is division
by a constant K, is needed later in the recursive
digital filter to prevent overflow.

1. Self-checking pulse-train residue arith-
metic circuit and its error detection.

Fig. 2 shows the symbol of the basic mo-
dule[8] used in this paper. The module is an
arithmetic circuit on a single residue digit.
Let inputs be A and B, the output X, the
multiplication constant K, and the modulus
m, then the arithmetic function of the basic
module is expressed as follows:

X(kT0) = | (A((k—1) To)-B((k—1)To))K Im
(6)

where to denotes the operating time of the
basic module and k the descrete time. From
Eq.(6), we see that the basic module has all
of the arithmetic functions of addition, mul-
tiplication and delay which are needed in
digital signal processing. Fig. 3 illustrates the
schematic circuit of the basic module, which
is composed of the difference ring-counter,
the product ring-counter, the line exchanger
and the shift control circuit. The 1 of N code
is used in the ring-counter. The operation of
A—B is performed by applying shift-pulses to
the difference counter. The multiplication
by K is performed by the code conversion
between the difference counter and the product
counter.

Two kinds of errors are possible to be
generated in the basic module[9]. One is the
code-error which generates some code different
from 1 of N code, and the other is the shifting-
error of the ring-counter. Error detection of
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Fig. 2. Symbol of the basic module.
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Fig. 3. Schematic circuit of the basic module.

the basic module is performed by the combina-
tion of the code error detection and shifting
error detection. In this paper, following
conditions are assumed:

[Condition 1] Any error other than the
shifting error of the ring-counter takes the form
of the code-error.

[Condition 2] A shifting error of the ring-
counter is a single bit error. The code error
can be detected by checking the number of
bits with level 1. A shifting error is detectable
by checking coincidence between the ring-
counter and the binary counter which operates
so as to hold Q modulo-2, where Q denotes
the content in the ring-counter. In Fig. 5,
the schematic circuit of the shifting error

Shift Error
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Difference Counter —l

r T
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L e
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X

Shift Error
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Fig. 4. Self-checking basic module.
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Fig. 5. Shifting error detecting circuit.
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Fig. 6. (a) Code error detecting circuit.
(b) Error transmitting circuit.

and in Fig. 6, code error detection circuit
and error transmitting circuit are shown.

2. Error correction based on the puls-train
residue arithmetic circuit.

When error is detected by using self-checking
pulse-train residue arithmetic circuits, the error
correction is realizable by the error correction
algorithm based on the base extension in the
residue arithmetic [9]. Next property is known
on this error correction method.

[Property] If R redundant digits are added,
then R error digits are correctable.

In this paper, following condition is as-
sumed:

[Condition 3] In an operating cycle of the
basic module, error occurs in a single digit.

Under this condition, only one redundant
digit is required. Fig. 9 shows an error correc-
tion circuit [9].

(207)
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III. Design Method of the Fault-Tolerant
Digital Filters

As well known, the transfer function H(Z)
of the digital filter is generally expressed by

ag+a; Z +a, 2% +. . +a, z™

H(Z) = N

1+b; Z7Y + b, z'2+...+bnz‘n

If all of by, ..., b, are 0, the digital filter is
called the non-recursive digital filter, otherwise
the recursive digital filter.

1. Design method of the non-recursive
fault-tolerant digital filter.

Consider the non-recursive digital filter
expressed by

Hi(Z)=ao+a; Z7'+...+a Z7™ (8)
The operation of this digital filter is represented
by

y(kT) = a9 x(kT) +a; x((k—1DT) +. ..
+a x((k—m)T) 9
where x, y denote the input and the output
respectively.
Following to the above Eq.(9), the non-
recursive fault-tolerant digital filter can be
implemented as shown H, (z) in Fig. 7.

_ Non-redundant digital fitter _

Error
correcting
circuit

Redundant sub-filter

Fig. 7. Non-recursive fault-tolerant digital
filter.
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The digital filter is composed of a non-
redundant digital filter, a redundant sub-filter
and the error correction circuit.

The basic modules used here are the self-
checking basic modules. Error detection is
performed in each modules. When an error
is detected in a basic module, the ‘ERROR’
signal is sent to the next module together
with the normal output signal. Error correction
is performed at the final stage.

2. Design method of the recursive fault-
tolerant digital filter

Consider the design of the recursive digital
filter expressed as

1

Hy(Z) =
1+b; Z71 +b, Z_2+...+an_“
(10)
The operation of the digital filter is expressed
by

y(kT) = x(kT) — by y((k—-1)T)
—byy((k-2)T) — ... —b y((k—0)T).
a1

The Eq.(11) is integerized as

y(kT) = [Kx(kT)— Kb; y((k—1)T)
—Kb, y((k—2)T) — . ..
—Kbny((k~n)T) 1 /K. (12)
Following be above Eq.(12), the fault-
tolerant recursive digital filter can be imple-
mented as shown in Fig. 8. The digital filter
is composed of a non-redundant digital filter,
a redundant sub-filter and the ertor correction
circuit. The scaling circuit in Fig. 10 performed
1/K operation to prevent to the overflow.
Because no digits in the scaling circuit are in-
dependent, an error in a digit is transmitted to
all digits on the scaling circuit. To avoid this
problem, the error correction circuit is perfor-
med before the scaling circuit. Errors which
occur in the scaling circuit can be corrected if
the duplex hardware of the scaling circuit is
provided.
‘The recursive digital filter with H(Z) ex-
pressed by Eq.(7) is implemented as follows:

2R BT IBEHFGE
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First, H(Z) is writen as

H(Z) = Hy(Z) * Ha(2). (13)

The digital filter with H(Z) can be con-
structed by connecting the recursive digital
filter with H,(Z) to the non-recursive digital
filter with H;(Z) in series. If the connection
is made as H,(Z)=H,(Z), then the error correc-
tion circuit in the non-recursive digital filter
can be omitted. The digital filter can be
constructed as shown in Fig. 8.

OD Gb Error &
correct
AN A circuit
@ &)
ap>—d> —p>—
NN
@ €]

Fig. 8. Fault-tolerant digital filter designed.

VI, Implementation of the Fault-Tolerant
Digital Filter

A 2nd-order recursive digital filter is prac-
tically implemented, which is the most basic
one. TTL ICs are used as the components.

1. Implementation of the self-checking
pulse-train residue arithmetic circuit

Fig. 4 shows the block-diagram of the self-
checking basic module which is constructed
by adding 2 code error detection circuits,
the shifting error detection circuit of the
difference counter, the shifting error detection
circuit of the product counter and the error
transmitting circuit to the standard basic
module. The code error detection circuits
are connected to the input terminals. By
this connection, errors which will occur on the
interconnections between modules are also
detectable. Fig. 5 showes the shifting error
detection circuit. Fig. 6 showes the code error
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detection circuit and the error transmitting
circuit. Rp is the final timing pulse in an
operating cycle.

2. Implementation of the error correction
circuit

Fig. 9 shows the error correction circuit.
This circuit is implemented using the base
extension theory. Basic modules belonging
to the n-th column have to be disabled when an
error is detected in the n-th digit. The disabling
operation 1is realized by using multiplexers
provided in parallel to each basic modules.

The error digit is corrected by using two
legitimate digits.

multiplex multiplexthee- th array Multiplex
the e-th the e-th
digit digit
Fig. 9. Error correcting circuit.

Fig. 10. Scaling circuit,

3. Implementation of the fault-tolerant

digital filter

At first, the parameters of fault-tolerant

digital filter is determined as Table 1. In Fig. 8,
the whole block-diagram of the digital filter
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is illustrated. The duplex hardware of the
scaling circuit is omitted. Fig. 12 (a) and (b)
show the normal output waveform after error
correction and the operation with error res-
pectively.

Fig. 11 shows the step response obtained
by simulation using a personal computer.
Because the wave-form in Fig.12(a) exactly
coincides with the one in Fig. 11, we recognize
that the digital filter fabricated is normally
operating and error detection/correction cir-
cuits are perfectely working.

11. Step response of the digital filter

(by simulation).

Fig.

(2) Normal operation after error correction.

(b) Response with error correction.

Fig. 12. Step responses of the digital filter
(partical wave form).
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Table 1. Parameters of the fabricated digital References

filter.

non-redundant moduli m;=11, m,;=19

redundant modulus m3=23
scaling factor K=m;=11
dynamic range(overall) M=m, * m,=209

dynamic range(after scaling)
filter coefficients

M/K=m,=19
b1=—1.1, b2=.8
Kb,=—13, Kb,=8

V. Conclusion

The design, implementation and noise
testing of a high reliable digital signal pro-
cessing system has been discussed here using
the self-checking pulse-train residue arithmetic
circuits. It is made clear that a selfchecking
pulse-train residue arithmetic circuit can be
constructed with TTL ICs, and that a 2nd-
order recursive fault-tolerant digital (filter
with 3 moduli can be constructed with 23
self-checking pulse-train residue arithmetic cir-
cuits. Table 2 showes the comparison of digital
filters. It is seen that the hardware of the
digital filter in this paper is 60-70% of the one
of typical TMR digital filter. The experimental
results confirm the feasibility of the use of
self-checking pulse-train residue arithmetic
circuits based RNS in the high reliable digital
signal processing. The anti-practical noise
testing of the digital filter will be the next
problem.

Table 2. Comparison of the hardware
complexity of digital filters.

proposed TMR
N=4, m=n=2 127 138
N=4, m=n=4 190 258
N=4, m=n=8 315 498

N=non-redundant digits
=orders of digital filter
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