• Title/Summary/Keyword: Pulse Echo

Search Result 312, Processing Time 0.03 seconds

Fabrication and Evaluation of a VHF Focusing Ultrasonic Transducer Made of PVDF Piezoelectric Film (PVDF 압전막을 이용한 초고주파 집속 초음파 트랜스듀서의 제작 및 특성 평가)

  • Yoon, Ju-Ho;Oh, Jung-Hwan;Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.215-222
    • /
    • 2011
  • In order to obtain high resolution images, a focusing ultrasonic transducer operated in very high frequency (VHF) range was fabricated and its characteristics were evaluated. A 9-${\mu}m$ thick PVDF film with only one metalized surface for electric ground was adhered to a CCP (Copper-clad polyimide) film by using epoxy. It was pressed by a metal ball to form a concave surface and its rear side was filled with the epoxy. The radius of curvature and the f-number of the fabricated transducer are 7.5 mm and 1.7, respectively. The pulse-echo measurement results from a target located at the focal point showed that the frequency bandwidth was 35.0 MHz and the insertion loss near the peak frequency of approximately 40 MHz was about 60 dB. Those values agreed well with the simulation results by the KLM equivalent circuit analysis including the effect of the epoxy bonding layer. When the image of thin copper lines by the 35 MHz transducer of the UBM (Ultrasonic Backscattering Microscope) system was compared with the image by the transducer fabricated in this study, the fabricated transducer was observed that the axial resolution was improved although the lateral resolution was degraded.

Fabrication and Evaluation of High Frequency Ultrasound Receive Transducers for Intravascular Photoacoustic Imaging (혈관내 광음향 영상을 위한 고주파수 초음파 수신 변환기 제작 및 평가)

  • Lee, Jun-Su;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.300-308
    • /
    • 2014
  • Photoacoustic imaging is a useful tool for the diagnosis of atherosclerosis because it is capable of providing anatomical and pathological information at the same time. A photoacoustic signal detector is a pivotal element to achieve high spatial resolution, so that it should have broadband spectrum with a high center frequency. Since a photoacoustic imaging probe is directly inserted into blood vessel to diagnose atherosclerosis, the total size of the photoacoustic signal detector should be less than 1 mm. The main purpose of this paper is to demonstrate that PVDF can be used as an active material for the photoacoustic signal detector with a high frequency and broadband characteristic. The photoacoustic signal detector developed in this study was a single element ultrasound transducer with an aperture of $0.5{\times}0.5mm$ and the total size of 1 mm. In the design stage, the natural focal depth was adjusted for an effective focal area to cover the region of interest, i.e., 1~5 mm in depth. This was because geometrical focusing could not be used due to the small aperture. Through a pulse-echo test, it was ascertained that the developed photoacoustic signal detector has the -6 dB bandwidth ranging between 40.1 and 112.8 MHz and the center frequency of 76.83 MHz.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

In Vivo $^1H$ MR Spectroscopic Study on Levodopa-Treated Parkison's Disease

  • Choe, Bo-Young;Baik, Hyun-Man;Son, Byung-Chul;Kim, Moon-Chan;Kim, Euy-Neyung;Suh, Tae-Suk;Lee, Hyoung-Koo;Shinn, Kyung-Sub
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • Authors evaluated alterations of observable metabolite ratios between the cerebral lesion and the contralateral region related to the clinical symptomatic side in levodopa-treated Parkinson's disease (PD) and investigated correlation between age in patients with PD and metabolite ratios of the lesion. Patients with levodopa-treated PD (n = 54) and age-matched normal controls (n = 15) underwent magnetic resonance spectroscopy (MRS) examinations using a stimulated echo acquisition mode (STEAM) pulse sequence that provided 2$\times$2$\times$2 cm3 volume of interest in the selected regions of substantia nigra (SN) and putamed-globus pallidus (PG). To evaluate dependence of metabolite ratios on age, we divided into two groups (i.e., younger and older age). We quantitatively measured N-acetylaspartate (NAA), creatine (Cr), choline-containing compounds (Cho), inositols (Ins), and the sum of glutamate (Glx) and GABA levels and obtained proton metabolite ratios relative to Cr using a Marquart algorithm. Compared with the contralateral region, a significant neuronal laterality of the NAA/Cr ratio in the lesion of SN related to the clinical symptomatic side was established (P = 0.01), but was not established in the lesion of PG (P = 0.24). Also, Cho/Cr ratio tended toward significance in the lesion of SN (P = 0.07) and was statistically significant in the lesion of PG(P = 0.01). Compared with that in the younger age group, NAA/Cr ratio in the older age was decreased in the lesion of SN (P = 0.02), while NAA/Cr ratio was not statistically significant in the lesion of PG ( P = 0.21). Significant metabolic alterations of NAA/Cr and Cho/Cr ratios might be closely related with functional changes of neuropathological process in SN and PG of levodopa treated PD and could be a valuable finding for evaluation of the PD. A trend of NAA/Cr reduction, being statistically significant in older patients, could be indicative of more pronounced neuronal damage in the SN of the progressive PD.

  • PDF

Evaluation of the Thermal Degradation in Co-based Superalloy using High frequency Transducer of Scanning Acoustic Microscope (초음파현미경의 고주파 초음파 탐촉자를 이용한 코발트기 초내열합금강의 열화평가)

  • Park, Ik-Keun;Cho, Dong-Su;Kim, Yong-Kwon;Lim, Jae-Seang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.518-524
    • /
    • 2004
  • The feasibility of Y(z) curve method of scanning acoustic microscope using high frequency transducer was experimentally studied for assessment of the thermal degradation in Co-based superalloy. Thermal degradation was performed to simulate the microstructural changes in Co-based superalloy arising from long term exposure at high temperature. Longitudinal wave velocity measured by pulse echo method using 10MHz transducer and leaky surface acoustic wave (LSAW) velocity measured by V(z) curve method using 200MHE transducer were measured to investigate the effect on thermal degradation. Ultrasonic velocity decreased as the aging time increased in both ultrasonic waves. Moreover, the low frequency longitudinal wave velocity decreased a little. Otherwise, the high frequency LSAW velocity drastically decreased up to a maximum of 4.7% at the aging time of 4,000hours. A good correlation was found between LSAW and Vickers hardness. Consequently, V(z) curve method of SAM using high frequency transducer could be a potential tool for assessing thermal degradation.

Higher Order Shimming for Ultra-fast Spiral-Scan Imaging at 3 Tesla MRI System (3 Tesla MRI 시스템에서 초고속 나선주사영상을 위한 고차 shimming)

  • Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • Purpose: To acquire high-resolution spiral-scan images at higher magnetic field, high homogeneous magnetic field is needed. Field inhomogeneity mapping and in-vivo shimming are important for rapid imaging such as spiral-scan imaging. The rapid scanning sequences are very susceptible to inhomogeneity. In this paper, we proposed a higher-order shimming method to obtain homogeneous magnetic field. Materials and Methods: To reduce measurement time for field inhomogeneity mapping, simultaneous axial/ sagittal, and coronal acquisitions are done using multi-slice based Fast Spin echo sequence. Acquired field inhomogeneity map is analyzed using the spherical harmonic functions, and shim currents are obtained by the multiplication of the pseudo-inverse of the field pattern with the inhomogeneity map. Results: Since the field inhomogeneity is increasing in proportion to the magnetic field, higher order shimming to reduce the inhomogeneity becomes more important in high field imaging. The shimming technique in which axial, sagittal, and coronal section inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the imhomogenity map is applied. The proposed technique is applicable to a localized shimming as well. High resolution spiral-scan imaging was successfully obtained with the proposed higher order shimming. Conclusion: Proposed pulse sequence for rapid measurement of inhomogeneity map and higher order shimming based on the inhomogeneity map work very well at 3 Tesla MRI system. With the proposed higher order shimming and localized higher order shimming techniques, high resolution spiral-scan images are successfully obtained at 3 T MRI system.

  • PDF

Comparison of In-Phase and Opposed-Phase FMPSPGR Images in Breath-hold T1-weighted MR IMaging of Liver (호흡정지 T1 강조 간 자기공명영상에서 동위상 역위상 FMPSPGR 영상의 비교)

  • 김명진;김만득;정재준;이종태;유형식
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.142-147
    • /
    • 1997
  • Purpose: To compare the effectiveness of the in-phase (IP) sequence and the opposed-phase (Op) sequence in the detection of focal hepatic lesions in the single breath-hold hepatic MR imaging with fast gradient T1-weighted pulse sequences. Materials and Methods: IP and OP T1-weighted breath-hold imaging was performed using fast gradient echo sequences in 45 patients referred for known focal hepatic lesions, in which 78 lesions were detected. Three blind readers independently reviewed the images for lesion detectability. The signal-to-noise ratio (SNR) of the liver, the lesion-to-liver contrast-to-noise ratio (CNR) and the liver-to-spleen CNR were also compared. A consensus was reached by three readers to determine which sequence is better in image quality. Results: On OP images, 61(78%), 61(78%), and 63(89%) lesions were correctly identified for reader 1, 2 and 3, respectively. On IP images, 66(85%), 65(83%), and 65(93%) lesions were detected for each reader, respectively. When two image sets were combined, 71(91 %), 69(88 %), and 76(97%) lesions respectively were detected for each reader. In cases of hepatocellular carcinoma, liver-to-Iesion CNR was greater on the OP images(p (0.05), but in other lesions significant difference was not demonstrated. Liver-to-spleen CNR was higher on OP images(p ( 0.1), but the SNR of the liver was higher on the IP images. Conclusion: Use of both IP and OP imaging can be helpful to avoid erroneous missing of some focal hepatic lesions.

  • PDF

The Study of in Vivo Visual Pathway Tracing using Magnetic Magnanese Tracer (자성 망간 추적자를 이용한 in Vivo 시신경경로 추적에 관한 연구)

  • Bae, Sung-Jin;Chang, Yong-Min
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Purpose: To evaluate the tracing of optic nerve tract using manganese enhanced magnetic resonance Imaging. Materials and Methods: After injecting $30{\mu}l$ of $MnCl_2(1mol)$ (1 mol) Into the retina of female New Zealand white rabbit, the contrast enhancements at major anatomical structures of optic nerve tract were evaluated by high resolution T1-weighted Images 12 hours, 24 hours, and 48 hours after $MnCl_2(1mol)$ Injection using 3D FSPGR (Fast Speiled Gradient Recalled echo) pulse sequence at 1.5T clinical MR scanner with high performance gradient system. Also, for quantitative evaluation, the signal-to-noise ratios of circular ROI on anatomical locations were measured. Results: The major structures on the optic nerve tract were enhanced after injecting $MnCl_2(1mol)$. The structures, which showed enhancement, were right optic nerve, optic chiasm, left optic tract, left lateral geniculate nucleus, left superior colliculus. The structures on the contralateral optic pathway to the right retina were enhanced whereas the structures on the ipsilateral pathway did not show enhancement. Conclusion: The Mn transport through axonal pathway of optic nerve sys)em was non- invasively observed after injecting injecting $MnCl_2$ at the retina, which is the end terminal of optic nerve system. This Mn transport seems to occur by voltage gated calcium $(Ca^{2+})$ channel and In case of direct Injection Into the retina, the fast transpori pathway of voltage gated calcium channel seems to be responsible for Mn transport.

  • PDF

Signal-Characteristic Analysis with Respect to Backing Material of PVDF-Based High-Frequency Ultrasound for Photoacoustic Microscopy (광음향 현미경을 위한 PVDF 기반 고주파수 초음파 변환기의 흡음층 소재에 따른 신호 특성 분석)

  • Lee, Junsu;Chang, Jin Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.112-119
    • /
    • 2015
  • Photoacoustic microscopy is capable of providing high-resolution molecular images, and its spatial resolution is typically determined by ultrasonic transducers used to receive the photoacoustic signals. Therefore, ultrasonic transducers for photoacoustic microscopy (PAM) should have a high operating frequency, broad bandwidth, and high signal-reception efficiency. Polyvinylidene fluoride (PVDF) is a suitable material. To take full advantage of this material, the selection of the backing material is crucial, as it influences the center frequency and bandwidth of the transducer. Therefore, we experimentally determined the most suitable backing material among EPO-TEK 301, E-Solder 3022, and RTV. For this, three PVDF high-frequency single-element transducers were fabricated with each backing material. The center frequency and -6 dB bandwidth of each transducer were ascertained by a pulse-echo test. The spatial resolution of each transducer was examined using wire-target images. The experimental results indicated that EPO-TEK 301 is the most suitable backing material for a PAM transducer. This material provides the highest signal magnitude and a reasonable bandwidth because a large portion of the energy propagates toward the front medium, and the PVDF resonates in the half-wave mode.