DOI QR코드

DOI QR Code

Fabrication and Evaluation of High Frequency Ultrasound Receive Transducers for Intravascular Photoacoustic Imaging

혈관내 광음향 영상을 위한 고주파수 초음파 수신 변환기 제작 및 평가

  • 이준수 (서강대학교 전자공학과) ;
  • 장진호 (서강대학교 서강미래기술연구원, 바이오융합 및 전자공학과)
  • Received : 2014.05.19
  • Accepted : 2014.08.05
  • Published : 2014.09.30

Abstract

Photoacoustic imaging is a useful tool for the diagnosis of atherosclerosis because it is capable of providing anatomical and pathological information at the same time. A photoacoustic signal detector is a pivotal element to achieve high spatial resolution, so that it should have broadband spectrum with a high center frequency. Since a photoacoustic imaging probe is directly inserted into blood vessel to diagnose atherosclerosis, the total size of the photoacoustic signal detector should be less than 1 mm. The main purpose of this paper is to demonstrate that PVDF can be used as an active material for the photoacoustic signal detector with a high frequency and broadband characteristic. The photoacoustic signal detector developed in this study was a single element ultrasound transducer with an aperture of $0.5{\times}0.5mm$ and the total size of 1 mm. In the design stage, the natural focal depth was adjusted for an effective focal area to cover the region of interest, i.e., 1~5 mm in depth. This was because geometrical focusing could not be used due to the small aperture. Through a pulse-echo test, it was ascertained that the developed photoacoustic signal detector has the -6 dB bandwidth ranging between 40.1 and 112.8 MHz and the center frequency of 76.83 MHz.

광음향 영상은 조직의 형태학적 정보뿐만 아니라 병리학적 정보도 함께 제공할 수 있어 죽상동맥경화증 진단에 유용하게 사용될 수 있다. 높은 해상도의 광음향 영상을 획득하기 위해서는 광음향 신호를 수신할 초음파 변환기가 고주파수 및 광대역 특성을 가져야만 한다. 또한 죽상동맥경화증 진단을 위해서는 혈관에 변환기를 직접 삽입하여 광음향 영상 신호를 획득해야하기 때문에 그 크기가 1 mm 이하가 되어야만 한다. 본 논문에서는 PVDF 압전 소재를 이용하여 혈관내 광음향 영상을 위한 고주파수, 광대역 특성을 갖는 초음파 변환기 제작이 가능함을 보였다. 개발한 광음향 수신 변환기는 단일소자이며 구경은 $0.5{\times}0.5mm$이고 전체 변환기 크기는 직경이 1 mm이내가 되도록 하였다. 작은 크기로 인해 형태학적 빔집속이 아닌 자연집속 깊이를 조절하여 관심영역(1~5 mm)에서 빔집속이 되도록 설계하였다. 제작한 혈관내 광음향 수신 변환기의 주파수 특성을 펄스-에코 응답실험을 통해 알아보았다. 제작된 변환기는 -6 dB 대역폭이 40.1~112.8 MHz이며, 중심 주파수가 76.83 MHz인 고주파수 및 광대역 특성을 갖는다는 것을 실험적으로 확인하였다.

Keywords

References

  1. B. D. MacNeill, H. C. Lowe, M. Takano, V. Fuster, and I.-K. Jang, "Intravascular modalities for detection of vulnerableplaque: current status," Arterioscler. Thromb. Vasc. Biol. 23, 1333-1342 (2003). https://doi.org/10.1161/01.ATV.0000080948.08888.BF
  2. T.Sawada, J. Shite, H. M. Garcia-Garcia, T. Shinke, S. Watanabe, H. Otake, D. Matsumoto, Y. Tanino, D. Ogasawara, H. Kawamori, H. Kato, N. Miyoshi, M. Yokoyama, P. W. Serruys, and K. Hirata, "Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma," Eur. Heart J. 29, 1136-1146 (2008). https://doi.org/10.1093/eurheartj/ehn132
  3. J. C Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. H. Hu, K. K. Shung, and Z. P. Chen, "Integrated intravascular optical coherence tomography ultrasound imaging system," J. Biomed. Opt. 15, 010512 (2010). https://doi.org/10.1117/1.3308642
  4. X. Li, J. Yin, C. H. Hu, Q. Zhou, K. K. Shung, and Z. Chen, "High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe," Appl. Phys. Lett. 97, 133702 (2010). https://doi.org/10.1063/1.3493659
  5. H. C. Yang, J. C. Yin, C. H. Hu, J. Cannata, Q. Zhou, J. Zhang, Z. Chen, and K. K. Shung, "A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging application," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57, 2839-2843 (2010). https://doi.org/10.1109/TUFFC.2010.1758
  6. J. Yin, X. Li, J. Jing, J. Li, D. Mukai, S. Mahon, A. Edris, K. Hoang, K. K. Shung, M. Brenner, J. Narula, Q. Zhou, and Z. Chen "Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging," J. Biomed. Opt. 16, 060505 (2011). https://doi.org/10.1117/1.3589097
  7. B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, "Intravascular photoacoustic imaging," IEEE J. Quantum. Electron. 16, 588-599 (2010). https://doi.org/10.1109/JSTQE.2009.2037023
  8. J. Kang, E.-K. Kim, J. Y. Kwak, Y. Yoo, T.-K. Song, and J. H. Chang, "Optimal laser wavelength for photoacoustic imaging of breast microcalcifications," Appl. Phys. Lett. 99, 153702 (2011). https://doi.org/10.1063/1.3651333
  9. J. Kang, E.-K. Kim, G. R. Kim, C. Yoon, T.-K. Song, and J. H. Chang, "Photoacoustic imaging of breast microcalcifications: a validation study with 3-dimensional ex vivo data and spectrophotometric measurement," J. Biophotonics. DOI 10.1002/jbio.201300100 (2013).
  10. W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, "Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging," J. Biomed. Opt. 16, 106001 (2011). https://doi.org/10.1117/1.3631798
  11. X. Li, W. Wei, Q. Zhou, K. K. Shung, and Z. Chen, "Intravascular photoacoustic imaging at 35 and 80 MHz," J. Biomed. Opt. 17, 106005 (2012).
  12. F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, "A history of medical and biological imaging with Polyvinylidene Fluoride (PVDF) transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47, 1363-1371 (2000). https://doi.org/10.1109/58.883525

Cited by

  1. Signal-Characteristic Analysis with Respect to Backing Material of PVDF-Based High-Frequency Ultrasound for Photoacoustic Microscopy vol.35, pp.2, 2015, https://doi.org/10.7779/JKSNT.2015.35.2.112
  2. Oblong-Shaped Focused Transducers for Intravascular Ultrasound Imaging 2016, https://doi.org/10.1109/TBME.2016.2572182