• 제목/요약/키워드: Pulse Discharge Technology

검색결과 156건 처리시간 0.027초

Trichel Pulse in Negative DC Corona discharge and Its Electromagnetic Radiations

  • Zhang, Yu;Liu, Li-Juan;Miao, Jin-Song;Peng, Zu-Lin;Ouyang, Ji-Ting
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1174-1180
    • /
    • 2015
  • We investigate in this paper the radiated electromagnetic waves together with the discharge characteristics of Trichel pulse of negative DC corona discharge in air in pin-to-plate and wire-to-plate configurations. The feature of the current pulse and the frequency spectrum of the electromagnetic radiations were measured under various pressures and gas gaps. The results show that the repetition frequency and the amplitude of Trichel pulse current depend on the discharge conditions, but the rising time of the pulse relates only to the radius of needle or wire and keeps constant even if the other conditions (including the discharge current, the gas gap and the gas pressure) change. There exists the characterized spectrum of electromagnetic waves from negative corona discharge in Trichel pulse regime. These characterized radiations do not change their frequency at a given cathode geometry even if the averaged current, the gas gap or the air pressure changes, but the amplitude of radiations changes accordingly. The characterized electromagnetic radiations from Trichel pulse corona relate to the formation or the rising edge of current pulse. It confirms that the characterized radiations from Trichel pulse supply information of discharge system and provide a potential method for detecting charged targets.

펄스 방전에 의한 충격파 발생 시뮬레이션 (Simulation of Shockwave Developed by Pulse Discharge)

  • 이승래;박현구;김태훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.912-921
    • /
    • 2009
  • Pulse-discharge technology (PDT) is an innovative technology which uses enormous energy developed by electric discharge for a very instant moment of time. Lately, it has been applied to make expanded sections at the ends of piles and anchors. The expanded section is formed by the deformation of bore-hole induced by shockwave energy developed in filling material by the pulse discharge. In this study, considering the phenomenon of pulse-discharge as an underwater explosion, finite element analyses were carried out to model the shockwave development by pulse discharge. The simulation technique was verified by comparing results with underwater discharge test results.

  • PDF

펄스방전 확공형 앵커의 하중전이에 관한 연구 (Load Transfer on Pulsed Power Discharge Anchors)

  • 김성규;김낙경;김재원;주용선;김선주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.832-839
    • /
    • 2010
  • The pulse discharge anchor is a method to increase the capacity of anchors using electric discharge geotechnical technologies, which is also known as pulse discharge and electric-spark technologies. The pulse discharge anchor has bulbed bond length that is expanded by high voltage electrokinetic pulse energy. 24 anchors were installed in the weathered soil and sandy clay at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea and attached strain gauge at 10 anchors. The numerical predictions by Beam-Column analysis were compared with observed measurements in a field load test.

  • PDF

표시기간 중첩 프라이밍 구동기술에 의한 플라즈마 디스플레이 패널의 고속구동특성 (High-Speed Characteristics of Plasma Display Panel using Priming Overlapping with Display Drive Method)

  • 염정덕
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.2004-2009
    • /
    • 2007
  • A new high-speed drive method for the plasma display panel is proposed. In this method, the address period is inserted for the rest period of the sustain pulses and the priming pulse is applied on the entire panel at the same time overlapping with the sustain period. The ramp shaped priming pulse can be made with a simple drive circuit in this technology and the stable sustain discharge can be induced even by a narrow scan pulse in help of the space charge generated from the address discharge. From the experiments, it is ascertained that the priming pulse hardly influences the sustain discharge. Moreover, the voltage margin of the sustain discharge is almost constant though that of the address discharge broadens with narrowing the scan pulse width. And, if the time interval between the scan pulse and the sustain pulse is within $6{\mu}s$, the voltage margin of the address and the sustain discharges are unaffected though the applied position of the scan pulse is changed. High-speed driving with the address pulse of $0.7{\mu}s$ width was achieved and the address voltage margin of 20V and the sustain voltage margin of 10V were obtained.

전극의 재료와 크기가 방전가공량에 미치는 영향 (Influence on Metal Removal Rate by Material and Size Difference of the Electrode)

  • 김희중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.809-815
    • /
    • 1998
  • This study has been performed to investigate MRR(metal removal rate) surface roughness with various pulse-on duration using the copper and graphite electrode according to the electrode size on the heat treated STD 11 which is extensively used for metallic molding steel in the EDM. The results obtained are as follow ;a)MRR increases a lot when pulse-on duration is 100 $\mu{s}$ or less but MRR has little difference with pulse-on duration of 100 $\mu{s}$ or more b) According to the increase of Pulse-on duration the large the electrode size the more MRR c) Safe discharge is needed to make maximum of MRR and the metallic organization must be complicated for discharge induction. d) Actual machining time is longer than theoretical machining time at the short pulse-on duration because of skin effect of current. e) Graphite electrode needs the larger electric discharge energy than copper electrode to remove remained chips completely.

  • PDF

Pulse-Sequence Analysis of Discharges in Air, Liquid and Solid Insulating Materials

  • Suwayno, Suwayno;Mizutani, Teruyoshi
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.528-533
    • /
    • 2006
  • Electrical discharges may occur in gas, liquid as well as solid insulating materials. This paper describes the investigation results on the discharges in air, silicone oil and low density polyethylene (LDPE) using needle plane electrode system under AC voltage of 50 Hz. The experimental results showed that for discharge in air (corona), discharge pulses were concentrated around the peak of applied voltage at negative half cycle. For silicone oil positive as well as negative discharges were observed which concentrated around the peak of applied voltage. The positive pulse number was smaller but the magnitude was higher than that of negative discharge. Discharges in void took place at wider range of phase of applied voltage. The unbalance in pulse number and magnitude similar to that of oil discharges were observed. For electrical treeing in LDPE, the discharges were spread before the zero cross of the applied voltage up to the peak at both positive and negative half cycles. The discharge pulse sequence analysis indicated that the PD occurrence in air, oil and void were strongly affected by the magnitude of applied voltage. However, for electrical treeing it was observed that the discharge occurrence was strongly affected by the time derivative of the applied voltage (dv/dt).

펄스 방전에 의한 시추공 확공 현상에 대한 수치해석 (Numerical Simulation of Borehole Expansion By Pulse Discharge)

  • 박현구;이승래;김태훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1346-1353
    • /
    • 2009
  • In this study, a numerical study was carried out to simulate the expansion of ground borehole by pulse discharge technology using finite element analysis. Considering the mortar in the borehole as an acoustic medium and the surrounding soil as an elasto-plastic material, the strong shock wave developed by the pulse discharge was modeled using the underwater explosion model. The ground expansion was simulated based on a coupled acoustic-structural analysis with varying properties of mortar and soil, and the behavior between acoustic-structural interface.

  • PDF

펄스 방전 기술에 의한 지반 확공 현상 수치해석 모사 (Numerical Simulation of Ground Expansion Induced by Pulse Discharge Technology)

  • 박현구;이승래;김선주;조규연
    • 한국지반공학회논문집
    • /
    • 제26권3호
    • /
    • pp.25-34
    • /
    • 2010
  • 본 연구에서는 펄스 방전 기술의 적용에 따른 지반 확공 현상에 대한 수치해석적인 연구를 수행하였다. 실내 펄스 방전 시험을 통하여 충격파 발생을 측정하였으며 수중 폭발 모델을 바탕으로한 유제-구조물 유한요소해석을 통해 실내 시험에서 계측된 충격파를 모사하였다. 이를 바탕으로, SPT N값으로부터 경험적으로 얻어지는 지반 물성이 적용된 점성토 지반에 대한 확공 해석을 수행하였으며 현장 시험과 유사한 예측 결과를 얻을 수 있었다.

ac PDP에서 Addressing 특성개선을 위한 Negative Ramp Slope이 적용된 Reset Pulse에 관한 연구 (The new reset pulse used negative ramp slope for improving the addressing characteristic in ac PDP)

  • 최혜림;정선욱;강정원
    • 반도체디스플레이기술학회지
    • /
    • 제5권2호
    • /
    • pp.11-14
    • /
    • 2006
  • A new reset waveform with negative ramp pulse is proposed. Conventional reset waveform applied to the commercial PDP uses a positive ramp pulse. The reset waveforms, especially focused on ramp area, were examined with 2 dimensional fluid code. The proposed negative reset waveform showed much lower ignition voltage ($\sim$70V) as compared with the conventional reset waveform. When the negative ramp pulse was applied, all of the positive-charged ions are collected on the scan electrode. It is found that the ignition voltage of reset discharge due to the negative ramp pulse became lower than that of positive ramp discharge.

  • PDF

전극의 3차원 측정데이터로부터 방전가공조건 결정 (Determination of Electrical Discharge Machining Parameters from the CMM data of a Electrode)

  • 주상윤
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.58-64
    • /
    • 2000
  • This paper proposes a method for determining optimal EDM parameters based on discharge area from the physical model of a tool electrode. Main parameters, which affect the EDM performance, are peak value of currents, pulse-on time, and pulse-off time. Such parameters are closely dependent on the discharge area in EDM process. In this paper the discharge area is estimated from the CMM scanning data to the tool electrode. The method is very useful when any geometric information to the tool electrode is not provided from tool modeler or producer. The method consists of following four steps. First a triangulation mesh is constructed from the CMM data. Secondly, the z-map is modeled from the triangulated mesh. Thirdly, the discharge area is estimated from intersection between the z-map model and a z-height plane. Finally, the machining parameters are easily calculated by some known EDM equations to the discharge area. An example is introduced to show that the machining parameters are calculated from the CMM data to a tool electrode.

  • PDF