• Title/Summary/Keyword: Public-key cryptosystems

Search Result 59, Processing Time 0.023 seconds

Design of finite field arithmtic for EC-KCDSA (전자서명을 위한 ECC기반 유한체 산술 연산기 구현에 관한 연구)

  • 최경문;황정태;류상준;김영철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.935-938
    • /
    • 2003
  • The performance of elliptic curve based on public key cryptosystems is mainly appointed by the efficiency of the underlying finite field arithmetic. This work describes a finite field multiplier and divider which is implemented using SystemC. Also this present an efficient hardware for performing the elliptic curve point multiplication using the polynomial basis representation. In order to improve the speed of the multiplier with as a little extra hardware as possible, adopted hybrid finite field multiplication and finite field divider.

  • PDF

A Class of Public Key Residue Cryptosystems (고차잉여류 문제에 기반을 둔 공개키 암호알고리즘 류)

  • 박성준;양형규;원동호
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1995.11a
    • /
    • pp.195-199
    • /
    • 1995
  • 본 논문에서는 지금까지 ${\gamma}$$^{th}$ -잉여류 문제를 이용하여 제안된 공개키 잉여류 암호알고리즘들을 살펴보고, ${\gamma}$의 크기에 따라 제안된 각 암호알고리즘들을 분류해 본다. 특히 이산대수 문제를 이용하여 현재까지 제안된 공개키 잉여류 암호알고리즘에서 사용하는 ${\gamma}$의 크기와 헝태를 더욱더 일반화한 새로운 공개키 잉여류 암호알고리즘을 제안한다.

  • PDF

Design of $AB^2 $ Multiplier for Public-key Cryptosystem (공개키 암호 시스템을 위한 $AB^2 $곱셈기 설계)

  • 김현성;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.2
    • /
    • pp.93-98
    • /
    • 2003
  • This paper presents two new algorithms and their architectures for $AB^2 $ multiplication over $GF(2^m)$.First, a new architecture with a new algorithm is designed based on LFSR (Linear Feedback Shift Register) architecture. Furthermore, modified $AB^2 $ multiplier is derived from the multiplier. The multipliers and the structure use AOP (All One Polynomial) as a modulus, which hat the properties of ail coefficients with 1. Simulation results thews that proposed architecture has lower hardware complexity than previous architectures. They could be. Therefore it is useful for implementing the exponential ion architecture, which is the tore operation In public-key cryptosystems.

ON THE PUBLIC KEY CRYPTOSYSTEMS OVER CLASS SEMIGROUPS OF IMAGINARY QUADRATIC NON-MAXIMAL ORDERS

  • Kim, Young-Tae;Kim, Chang-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.577-586
    • /
    • 2006
  • In this paper we will propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structures of class SEMIGROUPS of imaginary quadratic orders which were given by Zanardo and Zannier [8], and we will give a general algorithm for calculating power of ideals/classes via the Dirichlet composition of quadratic forms which is applicable to cryptography in the class semigroup of imaginary quadratic non-maximal order and revisit the cryptosystem of Kim and Moon [5] using a Zanardo and Zannier [8]'s quantity as their secret key, in order to analyze Jacobson [7]'s revised cryptosystem based on the class semigroup which is an alternative of Kim and Moon [5]'s.

The fast image encryption algorithm based on substitution and diffusion

  • Zhang, Yong;Jia, Xiaoyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4487-4511
    • /
    • 2018
  • A fast image encryption system based on substitution and diffusion was proposed, which includes one covering process, one substitution process and two diffusion processes. At first, Chen's chaotic system together with an external 256-bit long secret key was used to generate the key streams for image encryption, in which the initial values of Chen's chaotic system were regarded as the public key. Then the plain image was masked by the covering process. After that the resulting image was substituted with the disturbed S-Box of AES. Finally, the substituted image was diffused twice with the add-modulo operations as the core to obtain the cipher image. Simulation analysis and comparison results with AES and some existing image cryptosystems show that the proposed image cryptosystem possesses the merits of fast encryption/decryption speed, good statistical characteristics, strong sensitivity and etc., and can be used as a candidate system of network security communication.

A Forward-Secure Certificate-Based Signature Scheme with Enhanced Security in the Standard Model

  • Lu, Yang;Li, Jiguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1502-1522
    • /
    • 2019
  • Leakage of secret keys may be the most devastating problem in public key cryptosystems because it means that all security guarantees are missing. The forward security mechanism allows users to update secret keys frequently without updating public keys. Meanwhile, it ensures that an attacker is unable to derive a user's secret keys for any past time, even if it compromises the user's current secret key. Therefore, it offers an effective cryptographic approach to address the private key leakage problem. As an extension of the forward security mechanism in certificate-based public key cryptography, forward-secure certificate-based signature (FS-CBS) has many appealing merits, such as no key escrow, no secure channel and implicit authentication. Until now, there is only one FS-CBS scheme that does not employ the random oracles. Unfortunately, our cryptanalysis indicates that the scheme is subject to the security vulnerability due to the existential forgery attack from the malicious CA. Our attack demonstrates that a CA can destroy its existential unforgeability by implanting trapdoors in system parameters without knowing the target user's secret key. Therefore, it is fair to say that to design a FS-CBS scheme secure against malicious CAs without lying random oracles is still an unsolved issue. To address this problem, we put forward an enhanced FS-CBS scheme without random oracles. Our FS-CBS scheme not only fixes the security weakness in the original scheme, but also significantly optimizes the scheme efficiency. In the standard model, we formally prove its security under the complexity assumption of the square computational Diffie-Hellman problem. In addition, the comparison with the original FS-CBS scheme shows that our scheme offers stronger security guarantee and enjoys better performance.

Secure NTRU-based Authentication and Key Distribution Protocol in Quantum Computing Environments (양자 컴퓨팅 환경에 안전한 NTRU 기반 인증 및 키 분배 프로토콜)

  • Jeong, SeongHa;Lee, KyungKeun;Park, YoungHo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1321-1329
    • /
    • 2017
  • A quantum computer, based on quantum mechanics, is a paradigm of information processing that can show remarkable possibilities of exponentially improved information processing. This paradigm can be solved in a short time by calculating factoring problem and discrete logarithm problem that are typically used in public key cryptosystems such as RSA(Rivest-Shamir-Adleman) and ECC(Elliptic Curve Cryptography). In 2013, Lei et al. proposed a secure NTRU-based key distribution protocol for quantum computing. However, Lei et al. protocol was vulnerable to man-in-the-middle attacks. In this paper, we propose a NTRU(N-the truncated polynomial ring) key distribution protocol with mutual authentication only using NTRU convolution multiplication operation in order to maintain the security for quantum computing. The proposed protocol is resistant to quantum computing attacks. It is also provided a secure key distribution from various attacks such as man-in-the middle attack and replay attack.

Hybrid Cryptosystem based on Diffie-Hellman over Elliptic Curve (타원 곡선 상의 Diffie-Hellman 기반 하이브리드 암호 시스템)

  • 정경숙;정태충
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.104-110
    • /
    • 2003
  • In this paper, we proposed hybrid cryptosystem of Diffie-Hellman base in Elliptic Curve, and explained for specific protocol design. The proposed system is efficient hybrid cryptosystems system that offer implicit key authentication about sender and receiver unlike existing hybrid system. This system increased safety generating session key using pseudo-random number generator by cryptographic. Because the system is hybrid system, it is more efficient in calculation amount aspect supplementing merit and fault of public key system and secret key system. Also, the system can not get right plaintext except receiver even if sender's secret key is revealed and impersonation attack is impossible. And the system offers security on known keys without influencing in safety of other session's cryptogram even if session key is exposed. And the system is provided safety about mutual entity authentication and replay attack.

  • PDF

Enhancing Accuracy Performance of Fuzzy Vault Non-Random Chaff Point Generator for Mobile Payment Authentication

  • Arrahmah, Annisa Istiqomah;Gondokaryono, Yudi Satria;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.13-20
    • /
    • 2016
  • Biometric authentication for account-based mobile payment continues to gain attention because of improvements on sensors that can collect biometric information. We propose an enhanced method for mobile payment security based on biometric authentication. In this mobile payment system, the communication between the user and the relying party is based on public key infrastructure. This method secures both the key and the biometric template in the user side using fuzzy vault biometric cryptosystems, which is based on non-random chaff point generator. In this paper, we consider an important process for the common fuzzy vault system, that is, the feature extraction method. We evaluate various feature extraction methods to enhance the accurate performance of the system.

Digit-Serial Finite Field Multipliers for GF($3^m$) (GF($3^m$)의 Digit-Serial 유한체 곱셈기)

  • Chang, Nam-Su;Kim, Tae-Hyun;Kim, Chang-Han;Han, Dong-Guk;Kim, Ho-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.23-30
    • /
    • 2008
  • Recently, a considerable number of studies have been conducted on pairing based cryptosystems. The efficiency of pairing based cryptosystems depends on finite fields, similar to existing public key cryptosystems. In general, pairing based ctyptosystems are defined over finite fields of chracteristic three, GF($3^m$), based on trinomials. A multiplication in GF($3^m$) is the most dominant operation. This paper proposes a new most significant digit(MSD)-first digit- serial multiplier. The proposed MSD-first digit-serial multiplier has the same area complexity compared to previous multipliers, since the modular reduction step is performed in parallel. And the critical path delay is reduced from 1MUL+(log ${\lceil}n{\rceil}$+1)ADD to 1MUL+(log ${\lceil}n+1{\rceil}$)ADD. Therefore, when the digit size is not $2^k$, the time delay is reduced by one addition.