• Title/Summary/Keyword: Pteris multifida

Search Result 17, Processing Time 0.017 seconds

Effects of Culture Soil Combinations on Growth of Pteris multifida, Cyrtomium falcatum and Cheilanthes argentea (인공 배양토 종류가 봉의꼬리, 도깨비고비, 부싯깃고사리의 생육에 미치는 영향)

  • Yoo, Dong-Lim;Lee, Hyean-Suk;Nam, Chun-Woo;Kim, Soo-Jeong;Suh, Jong-Taek
    • Korean Journal of Plant Resources
    • /
    • v.19 no.4
    • /
    • pp.517-520
    • /
    • 2006
  • The effects of culture soil combinations on growth of native pteridophyte (Pteris multifida, Cyrtomium falcatum and Cheilanthes argentea) were investigated in this study. Six different culture soil mixtures used for cultivating the pteridophytes under 30% shading condition. Pteris multifida was showed the most growth at the culture soil mixtures of peatmoss : living moss (5 : 5), and peatmoss : perlite (7 : 3). Cyrtomium falcatum and Cheilanthes argentea showed the best growth in the culture soils mixtures of sand : soil : leaf mold (2 : 5 : 3) and peatmoss : perlite (7 : 3, 5 : 5), respectively.

Effect of Arsenic Types in Soil on Growth and Arsenic Accumulation of Pteris multifida (토양 비소 오염원의 종류가 봉의꼬리의 생육 및 비소 축적에 미치는 영향)

  • Han, Ji Hyun;Kwon, Hyuk Joon;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.27 no.4
    • /
    • pp.344-353
    • /
    • 2014
  • This study was carried out to analyze the effect of arsenic types on growth and arsenic accumulation ability of Pteris multifida. Among arsenic pollution sources, Sodium arsenate, Calcium arsenate, Sodium arsenite and Potassium arsenite were treated in horticultural compost contaminated with $500mg{\cdot}kg^{-1}$. P. multifida was cultivated for 12 weeks. The results of study, Calcium arsenate treatment showed slightly decreased growth of P. multifida. But, growth of P. multifida cultivated in the remaining arsenic treatment was similar to untreated control plot. With only short-term cultivation of 4 weeks, aerial part of P. multifida in Sodium arsenate treatment showed high arsenic accumulation of $2,289.5mg{\cdot}kg^{-1}DW$. The arsenic accumulation ($2,956.0mg{\cdot}kg^{-1}DW$) was the highest at 12 week. On the other hand, underground part showed the highest arsenic accumulation in Potassium arsenite treatment ($2,470.2mg{\cdot}kg^{-1}DW$) and Calcium arsenate treatment accumulated $1,060.7mg{\cdot}kg^{-1}DW$ of arsenic. Regardless of arsenic types, aerial part of P. multifida was absorbed more than $1000mg{\cdot}kg^{-1}DW$ of arsenic. And removal of arsenic in soil was also higher. Therefore, Pteris multida is considered to be suitable phytoremediation meterial of various arsenic contaminated areas.

Effect of Mixed Planting Ratios of Pteris multifida Poir. and Artemisia princeps Pamp. on Phytoremediation of Heavy Metals Contaminated Soil (중금속 오염토양 정화에 영향을 미치는 봉의꼬리(Pteris multifida Poir.)와 쑥(Artemisia princeps Pamp.)의 혼합식재 비율)

  • Kwon, Hyuk Joon;Jeong, Seon A;Shin, So Lim;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.160-166
    • /
    • 2017
  • This study was performed to develop the efficient phytoremediation model in the paddy soil contaminated with heavy metals by cultivating Pteris multifida and Artemisia princeps with different mixing ratios (1:0, 8:1, 6:1, 4:1). As a result of investigating the heavy metal accumulation of each plant per dried material (1 kg), content of arsenic and cadmium was the highest in aerial part of P. multifida (169.82, $1.70mg{\cdot}kg^{-1}DW$, each) among the treated group. Lead content was the highest ($12.58mg{\cdot}kg^{-1}DW$) in the aerial part of P. multifida cultivated with 8:1 mixed planting. But the content of copper and zinc was the highest (33.94, $61.78mg{\cdot}kg^{-1}DW$, each) in the aerial part of A. princeps with 8:1 treatment. Regardless of heavy metals, plant uptake from the $1m^2$ soil was the highest in 4:1 mixed planting group, which showed the best yield of A. princeps.

Effect of Shading Treatment on Arsenic Phytoremadiation Using Pteris multifida in Paddy Soil (봉의꼬리를 이용한 논토양의 비소정화에 미치는 차광처리의 영향)

  • Kwon, Hyuk Joon;Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.26 no.1
    • /
    • pp.68-74
    • /
    • 2013
  • This study was conducted to analyse the effectiveness of shading on growth and arsenic absorption of Pteris multifida, known as hyperaccumulator of arsenic, from paddy soils contaminated with heavy metals. Study was carried out in paddy soil polluted by arsenic near the former Janghang smelter. P. multifuda in the same growth stage was planted with $20{\times}20cm$ intervals in each experimental plot ($2{\times}2m$), and cultivated for 24 weeks. The growth of P. multifuda according to shading conditions was evaluated, the accumulated amount of arsenic in plants and arsenic variation in the soil was analyzed using ICP. In the result of this study, the growth of P. multifida cultivated under shading treatment was vigorous than non-shading. Accumulated amount of arsenic in aerial parts of P. multifida cultivated under non-shading ($169.8mg{\cdot}kg^{-1}$) was slightly higher than shading ($140.9mg{\cdot}kg^{-1}$), and those in underground part were almost the same. But the growth was great in 70% shading treatment. Therefore, arsenic contents absorbed from soils was much higher in shading treatment. Arsenic translocation rate (TR) of P. multifida was very high (0.87~0.89) regardless of shading conditions. So arsenic in soil could be efficiently eliminated by removal of aerial parts.

Effect of Nutrient Concentrations and Fertilization Intervals on Growth of Native Pteridophyte on Greenhouse (자생 앙치류의 양액농도와 관주주기가 생육에 미치는 영향)

  • Suh, Jong-Taek;Yoo, Dong-Lim;Lee, Hyean-Suk;Nam, Chun-Woo;Kim, Soo-Jeong;Lee, Hee-Kyeong
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.69-72
    • /
    • 2007
  • This study was performed to determine the effect of nutritional concentrations and fertilization intervals on growth of native pteridophyte (Pteris multifida, Cyrtomium falcatum, Cheilanthes argentea). Nutrient concentrations were treated with non-treat, 500X, 1,000X and 2,000X solution, and fertilization periods were treated in everyday, 5, 10 and 20day respectively, under the 30% shading net. Pteris multfida appeared to be very good for growth by fertilizing at intervals of 10 day with nutrient concentration of 2,000X drainage solution. The growth of Cyrtomium falcatum was the best in the treatment of $1,000{\sim}2,000X$ concentration for 10 days while that of Cheilanthes argentea was the highest in the treatment of 1,000X concentration for 5days.

Growth and Physiological Responses of Four Plant Species to Different Sources of Particulate Matter

  • Kwon, Kei-Jung;Odsuren, Uuriintuya;Bui, Huong-Thi;Kim, Sang-Yong;Park, Bong-Ju
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.5
    • /
    • pp.461-468
    • /
    • 2021
  • Background and objective: Particulate matter (PM) has a serious impact on health. Recently, studies are conducted to reduce PM in an environmentally friendly way using plants. This study investigated the physiological responses of plants and their ability to remove PM by continuously spraying different PM sources (loam, fly ash, carbon black) to four native plant species, such as Iris sanguinea, Pteris multifida, Vitis coignetiae, and Viburnum odoratissimum var. awabuki. Methods: The four plant species were randomly placed in four chambers, and 0.1 g of different PM was injected into each chamber twice a week. We measured chlorophyll, carotenoid, chlorophyll fluorescence (Fv/Fm), total leaf area, amount of leaf wax, PM10 (sPM10) and PM2.5 (sPM2.5) on the leaf surface, and PM10 (wPM10) and PM2.5 (wPM2.5) on the wax layer. Results: For I. sanguinea and V. coignetiae, the sources of PM did not affect the growth response. P. multifida showed high chlorophyll a, b, total chlorophyll, and carotenoid content in carbon black as well as high Fv/Fm and total leaf area, thereby proving that carbon black helped plant growth. By PM sources, sPM10 showed a significant difference in three plant species, sPM2.5 in two plant species, and wPM10 in one plant species, indicating that sPM10 was most affected by PM sources. Conclusion: Carbon black increased the leaf area by affecting the growth of P. multifida. This plant can be effectively used for PM reduction by increasing the adsorption area. I. sanguinea and V. coignetiae can be used as economical landscaping plants since they can grow regardless of PM sources.