• Title/Summary/Keyword: Pseudomonas gladioli

Search Result 7, Processing Time 0.017 seconds

Characterization of Bacteria Isolated from Rotted Onions (Allium cepa) (양파 부패병변에서 분리한 세균의 특성)

  • Lee Chan-Jung;Lim Si-Kyu;Kim Byung-Chun;Park Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2005
  • One hundred thirty nine bacteria were isolated from rotten onions collected from main producing districts, Chang-Nyung, Eui-Ryung, and Ham-Yang in Korea. The $18\%$ (25 strains) of bacterial isolates have carboxymethylcellulase (CMCase) activity and the $53\%$ (74 strains) have polygalacturonase (PGase) activity. Thirty one among randomly selected 45 strains of PGase producing bacteria have pathogenicity to onions. The isolates were classified into Pseudomonas sp. (18 strains), Bacillus sp. (11 strains), Yers-inia sp. (7 strains), and others (9 strains) on the basis of FAMEs patterns. Eighteen strains of Pseudomonas sp. were mainly divided into three cluster in the dendrogram and only the two clusters of them showed pathogenicity to onions. CMCase and PGase activities of Pseudomonas sp. weaker than those of Bacillus sp.. However, the pathogenicity of pseudomonas sp. to soften onions was stronger than that of Bacillus sp. Inoculation of $10^{2}$ cfu of Pseudomonas sp. gives rise to softening of onions. Pseudomonas sp. was identified as Pseudomonas gladioli by biochemical and physiological characteristics. P. gladioli is the first reported bacterium as a pathogen of onion in Korea. In low temperature, P. gladioli showed better growth and higher PGase activity than those of Bacillus sp. identified as Bacillus subtilis. And pH 9.0 is optimal pH for PGase activity of B. subtilis while that of P. gladioli is pH $5.0\∼6.0$ which is the acidity of onions. Taken together, P. gladioli may be a main pathogene of onion rot during the cold storage condition.

Effects of Plants, Rhizobacteria and Physicochemical Factors on the Phytoremediation of Contaminated Soil (오염 토양의 식물상 복원효율에 미치는 식물, 근권세균 및 물리.화학적 인자의 영향)

  • Hong, Sun-Hwa;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2007
  • Phytoremediation is an economic and environmentally friendly technique to remediate contaminated-soil. In this study, the effects of plants, rhizobacteria and physicochemical factors on phytoremediation have been reviewed. For successful phytoremediation, the selection of plants is primarily important. To remediate soil contaminated with petroleum hydrocarbon, raygrass (Lolium multiflorum lam), white mustard, vetch (Vicia villosa), tall fescue (Festuca arundinacea), legumes, poplar, and Pine (Pinus densiflora) were mainly applied, and the removal efficiency of petroleum hydrocarbon were ranged 68 to 99%. Corn (Zea mays), raygrass (Lolium multiflorum lam), vetch (Vicia villosa), mustard, clover (Trifolium repens), and tall fescue (Festuca arundinacea) were used for the removal of polycyclic aromatic hydrocarbon, and their removal efficiencies were 50-98%. Rhizobacteria play significant roles for phytoremediation because they can directly participate in the degradation of contaminant as well as promoting plants growth. The following rhizobacteria were preferred for phytoremediation: Azospirillum lipoferum, Enterobactor cloacae, Azospirillum brasilense, Pseudomonas putida, Burkholderia xenovorans, Comamonas testosterone, Pseudomonas gladioli, Azotobacter chroococcum, Bacillus megaterium, and Bacillus subtilis. Pysicochemical factors such as pH, temperature, nutrient, electron acceptor, water content, organic content, type of contaminants are consequential limiting factors for phytoremediation.

Observation of Growth Inhibition of Elsinoe fawcettii on Satsuma Mandarin Leaves Pre-treated with Rhizobacterial Strains by a Scanning Electron Microscope (식물근권세균을 처리한 감귤 잎에서 주사전자현미경을 통한 감귤 더뎅이병균의 생장 억제 관찰)

  • Park, Jae Sin;Song, Min-A;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Elsinoe fawcettii causing citrus scab was suppressed by rhizobacterial strains such as Burkholderia gladioli MRL408-3, TRH423-3 and Pseudomonas fluorescens THJ609-3, TRH415-2 having antifungal activity. The leaf surface of Satsuma mandarin, which was pre-treated with the rhizobacterial strains, was observed by a scanning electron microscope (SEM) after inoculation with E. fawcettii. The number of lesions was reduced on the leaves pre-treated with the rhizobacterial strains compared to those of untreated leaves. Especially, the lesions numbers was apparently reduced on the leaves pre-treated with B. gladioli MRL408-3. The observation by SEM revealed that not only the germination rate but also the length of germ tube of the pathogen were decreased on the rhizobacterial strains pre-treated leaves. These inhibition of the fungal growth was more strongly expressed on the leaves pre-treated with commercial fungicide imibenconazole, by which the lesions was rarely found on the leaves. Based on these results, it was suggested that rhizobacterial strains may inhibit the germination and growth of the E. fawcettii on the surface of citrus leaves, resulting in decrease of disease severity.

Suppression of Citrus Melanose on the Leaves Treated with Rhizobacterial Strains after Inoculation with Diaporthe citri (식물근권세균 처리에 의한 감귤 검은점무늬병에 대한 방제 효과)

  • Ko, Yun Jung;Kang, So Young;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.331-337
    • /
    • 2012
  • Citrus melanose is one of important disease in citrus cultivation, reducing quality of citrus fruits and resulting in economic loss. Like other diseases in citrus, melanose was mainly protected by chemical fungicide in the field. Recently, alternative method of disease control is highly required due to the side effect of the chemicals. In this study four rhizobacterial strains TRH423-3, MRL408-3, THJ609-3, and TRH415-2 are selected by dual-culture testing its antifungal activity against Diaporthe citri causing citrus melanose. To investigate the protection efficacy of the selected rhizobacterial strains to citrus melanose, the bacteria were pre-treated on citrus leaves following inoculation with melanose pathogen. Pre-treatment with all selected rhizobacterial strains showed disease suppression in which the levels of protection rates were different by the rhizobacterial strains. Additional treatment with the rhizobacterial strains after the pathogen inoculation enhanced protection rates in all cases. The strain MRL408-3 and TRH423-3 were identified as Burkholderia gladioli, TRH415-2 as Pseudomons fluorescens and THJ609-3 as Pseudomonas pudia as a result of analyzing the internal transcript spaces of the rhizobacterial strains rDNA. The selected rhizobacterial strains may be valuable as biological control agents in the environment-friendly citrus farm in which chemical application is limited.

Suppression Effect and Mechanism of Citrus Scab in the Citrus Pre-inoculated with Rhizobacterial Strains (근권세균을 전 접종한 감귤에서 감귤 더뎅이병 억제 효과 및 기작)

  • Kim, So-Yeon;Hyun, Jae-Wook;Jeun, Yong-Chull
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.302-310
    • /
    • 2011
  • Elsinoe fawcettii is one of major pathogenic fungi which cause citrus scab diseases, resulting in fruit blemishes that reduce the economic value of fruit. By increasing interest to safe products of crops, the alternative methods of disease control is highly required. We investigated whether the 215 bacterial strains isolated from Jeju Island possess antifungal effect or suppression effect on the symptom development by Elsinoe fawcettii on citrus. Among them, three bacterial strains THJ 609-3, MRL408-3, and TRH423-3 that exhibited antifungal capacity against Elsinoe fawcettii were selected. To illustrate the disease suppression mechanism, pre-inoculation with the selected bacterial strains was carried out whether could suppress the citrus crab on the leaves. The observation with a fluorescence microscope revealed that the selected bacteria could decrease the number of fungal spores. The ratio of germ tube formation was also decreased by the selected bacterial strains at one day after fungus challenge. The strain THJ 609-3 was identified as Pseudomonas putida as a result of analyzing the internal transcript spaces of the rhizobacterial rDNA. The strains MRL 408-3 and TRH 423-3 were identified as Burkholderia gladioli. Our results may be valuable when the selected rhizobacterial strains used as the environment-friendly microbe for biological control on citrus scab caused by Elsinoe fawcettii.

Antibacterial Effect of Bacteria Isolated from the Plant Rhizosphere against Pathogenic Bacteria of Fish (식물근권에서 분리한 세균의 어류질병세균에 대한 항균활성 효과)

  • Jeong, Ji-Woon;Park, So-Hyun;Kim, Dong-Hwi;Jeun, Yong-Chull;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.757-761
    • /
    • 2014
  • Olive flounder (Paralichthys olivaceus) is an important aquaculture fish species in Jeju Island, South Korea. Due to the intensification of flounder fish farming, huge amounts of chemical antibiotics are used against several fish diseases. This has many harmful side effects on fish, as well as human consumers. Hence, an alternative to chemical antibiotic agents is needed for disease control. In this study, three strains of rhizobacteria (BRH433-2, TRH415-2, and THJ609-3) were isolated from the rhizosphere of plants. Assays of their antibacterial activity against fish pathogens, such as S. iniae, S. parauberis, V. anguillarum, and E. tarda, were performed with untreated broth culture (without cell separation), supernatant, and precipitated pellets separated by centrifugation. Among these, the cell suspension prepared from the precipitated pellet showed significant antimicrobial activity when compared with that of the untreated broth culture and centrifugal supernatant. These results indicate that the three isolated rhizobacterial strains exhibit antibacterial activity. Analysis of the 16S rDNA sequences of the BRH-433-2, THJ609-3, and TRH415-2 strains showed the highest similarity to Burkholderia gladioli (99.5%), Pseudomonas baetica (97.7%), and P. koreensis and P. baetica (98.4%), respectively. We suggest that the strains hold promise in disease management of fish.

Effective Control Strategy against Bacterial Blight on Carrot (당근 세균잎마름병에 대한 효과적 방제 수단)

  • Hyun Su Kang;Mi-Jin Kim;Yong Ho Shin;Yong Chull Jeun
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.405-413
    • /
    • 2023
  • Bacterial blight of carrot caused by Xanthomonas hortorum pv. carotae (Xhc) is one of the serious diseases of carrot, of which control measures has not been still established in the domestic farm. In this study, in order to select effective sterilizer for bacterial blight of carrots, three antibiotics such as streptomycin, oxolinic acid, kasugamycin, two copper compounds like copper hydroxide and copper sulfate basic and three rhizobacteria Burkholderia gladioli MRL408-3, Pseudomonas fluorescens TRH415-2 and Bacillus cereus KRY505-3 were selected to investigate their direct antibacterial effects using artificial media, aiming to identify effective pesticides against Xhc. Among them, treated medium with antibiotics such as streptomycin, oxolinic acid, and the antagonistic rhizobacteria MRL408-3 were formed inhibition zone. The agrochemicals and the rhizobacteria MRL408-3, which showed antibacterial effects on carrot leaves, pre-treated on the carrot leaves and then inoculated with Xhc. High control effects were shown on the carrot leaves pre-treated with both streptomycin and oxolinic acid. Scanning electron microscopy images of the carrot leaf surfaces showed that the population of bacteria decreased significantly on leaves pre-treated with streptomycin and oxolinic acid. From these results, it can be inferred that antibiotics like streptomycin and oxolinic acid exhibit superior control effects compared to other agents. This study provides valuable insights towards establishing an effective control system for bacterial blight of carrot.