Browse > Article

Effects of Plants, Rhizobacteria and Physicochemical Factors on the Phytoremediation of Contaminated Soil  

Hong, Sun-Hwa (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.4, 2007 , pp. 261-271 More about this Journal
Abstract
Phytoremediation is an economic and environmentally friendly technique to remediate contaminated-soil. In this study, the effects of plants, rhizobacteria and physicochemical factors on phytoremediation have been reviewed. For successful phytoremediation, the selection of plants is primarily important. To remediate soil contaminated with petroleum hydrocarbon, raygrass (Lolium multiflorum lam), white mustard, vetch (Vicia villosa), tall fescue (Festuca arundinacea), legumes, poplar, and Pine (Pinus densiflora) were mainly applied, and the removal efficiency of petroleum hydrocarbon were ranged 68 to 99%. Corn (Zea mays), raygrass (Lolium multiflorum lam), vetch (Vicia villosa), mustard, clover (Trifolium repens), and tall fescue (Festuca arundinacea) were used for the removal of polycyclic aromatic hydrocarbon, and their removal efficiencies were 50-98%. Rhizobacteria play significant roles for phytoremediation because they can directly participate in the degradation of contaminant as well as promoting plants growth. The following rhizobacteria were preferred for phytoremediation: Azospirillum lipoferum, Enterobactor cloacae, Azospirillum brasilense, Pseudomonas putida, Burkholderia xenovorans, Comamonas testosterone, Pseudomonas gladioli, Azotobacter chroococcum, Bacillus megaterium, and Bacillus subtilis. Pysicochemical factors such as pH, temperature, nutrient, electron acceptor, water content, organic content, type of contaminants are consequential limiting factors for phytoremediation.
Keywords
Phytoremediation; soil contamination; plant; rhizobacterium; limiting factors;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Chekol, T., L. R. Vough, and R. L. Chaney. 2004. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ. Int. 30: 799-804   DOI   ScienceOn
2 Cunningham, S. D. and W. R. Berti. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol. 29: 207-220   DOI   ScienceOn
3 Eapen, S., S. Singh, V. Thorat, C. P. Kaushik, K. Ra, and S. F. D'Souza. 2006 Phytoremediation of radiostrontium (^{90}Sr$) and radiocesium ($^{137}Cs$) using giant milky weed (Calotropis gigantea R.Br.) plants. Chemosphere 65: 2071-2073   DOI   ScienceOn
4 Escalante-Espinosa, E., M. E. Gallegos-Martinez, E. Favela-Torres, and M. Gutierrez-Rojas. 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413   DOI   ScienceOn
5 FIocco, C. G., M. P. Carranza, L. G. Carvajal, R. M. Loewy, A. M. Pechen de Dangelo, and A. M. Giulietti. 2004. Removal of azinphos methyl by alfalfa plants (Medicago sativa L.) in a soil-free system. Sci. Total Environ. 327: 31-39   DOI   ScienceOn
6 Kloepper, J. W., A. Gutierrwz-estrada and J. A. Mclnroy. 2007. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53:159-167   DOI
7 Liste, H. and D. Felgentreu. 2006. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31: 43-52   DOI   ScienceOn
8 Meers, E., B. Vandecasteele, A. Ryttens, J. Vangronsveld, and F. M. G. Track., 2007. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Enviromental and Experimental Botany 60: 57-68   DOI   ScienceOn
9 Muratova, A. Y., O. V. Turkovskaya, L. P. Antonyuk, O. E. Makarov, L. I. Pozdnyakova, and V. V. Ignatov. 2005. Oiloxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology. 74: 210-215   DOI
10 NeW, D. B., S. J. Allen, and J. F. Brown. 1996. Deleterious rhizosphere bacteria an intergrating perspective(review). Appl. Soil Ecol. 5: 1-20   DOI   ScienceOn
11 Nichols, T. D., D. C. Wolf, H. B. Roger, C. A. Beyrouty, and C. M. Reynold. 1997. Rhizosphere microbial populations in contaminated soils. Water Ai, and Soil Pollut. 95: 165-168
12 Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Miccrobiol. 41: 533-536   DOI   ScienceOn
13 Nakamura, T., T. Motoyama, Y. Suzuki, and I. Suzuki. 2004. Biotransformation of pentachlorophenol by Chinese chive and a recombinant derivative of its rhizosphere-competent microorganism Pseudomonas gladioli M-2196. Soil Biol. Biochem. 36: 787-795   DOI   ScienceOn
14 Thomas F. C., Chin-A-Woeng, W. Priester, A. J. Bij, and B. J. J. Lugtenberg. 1997. Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas jluorescens biocontrol strain WCS365 using scanning electron microscopy. Mol. Plant Microbe. In. 10:79-86   DOI   ScienceOn
15 Kim, J. Y. and K. S. Cho. 2006. Bioremediation of oil-contaminated soil using rhizobacteria and plant. Kor. J. Microbiol. Biotechnol. 34: 185-195   과학기술학회마을
16 Zakia, D., M. Parrish, B. Katherine, and A. P. Schwab. 2005. Effect of Root Death and Decay on Dissipation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere of Yellow Sweet Clover and Tall Fescue. Bioremediation and Biodegradation 34: 207-216
17 Jankong, P., P. Visoottiviseth, and S. Khokiattiwong. 2007. Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68: 1906-1912   DOI   ScienceOn
18 Tesar, M., T. G. Reichenauer, and A. Sessitsch. 2002. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil BioI. Biochem. 34: 1883-1892   DOI   ScienceOn
19 Kechavarzi, C., K. Pettersson, P. Leeds-Harrison, L. Ritchie, and S. Ledin. 2007. Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ. Pollut. 145: 68-74   DOI   ScienceOn
20 Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crop: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194: 65-79   DOI   ScienceOn
21 Koo, S. Y. and K. S. Cho. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metalcontaminated soil. Kor. J. Microbiol. Biotechnol. 2: 83-93   과학기술학회마을
22 Ahn, T. S., J. O. Ka, G. H. Lee, and H. G. Song. 2007. Revegetation of a lakeside barren area by the application of plant growth-promoting rhizobacteria. J. Microbiol. 45: 171-174   과학기술학회마을
23 Garcia, G., A. Faz, and M. Cunha. 2004. Performance of Piptatherum miliaceum(Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int. Biodeter. Biodegr. 54: 245-250   DOI   ScienceOn
24 Macek, T. M. and J. Kas. 2000. Exploitation of plants for the removal of organics in environmental remediation(research review paper). Biotechnol. Adv. 18: 23-34   DOI   ScienceOn
25 Narasimhan, K., C. V. Basheer, B. Bajic, and S. Swamp. 2003. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol. 132: 146-53   DOI   ScienceOn
26 Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B. M. Greenberg. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 91: 139-147
27 Santos, F. S., J. Hernandez-Allica, J. M. Becerril, N. Amaral-Sobrinho, N. Mazur, and C. Garbisu. 2006. Chelateinduced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65: 43-50   DOI   ScienceOn
28 Burken, J. G. and J. L. Schnoor. 1996. Phytoremediation: plant uptake of atrazine and role of root exudates. J. Environ. Eng.-ASCE 122: 958-963   DOI   ScienceOn
29 Coulon, F., E. Pelletier, L. Gourhant, and D. Delille. 2005. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58: 1439-1448   DOI   ScienceOn
30 Johnson, D. L., D. R. Anderson, and S. P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAR contaminated soil. Soil BioI. Biochem. 37: 2334-2336   DOI   ScienceOn
31 Wyrzykowska, B., N. Hanari, A. Orlikowska, I. Bochentin, P. Rostkowski, J. Falandysz, S. Taniyasu, Y. Horii, Q. Jiang, and N. Yamashita. 2007. Polychlorinated biphenyls and -naphthalenes in pine needles and soil from Poland-Concentrations and patterns in view of long-term environmental monitoring. Chemosphere 67: 1877-1886   DOI   ScienceOn
32 Betancur-Galvis, L. A., D. Alvarez-Bernal, A. C. Ramos-Valdivia, and L. Dendooven. 2006. Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco. Chemosphere 62: 1749-1760   DOI   ScienceOn
33 Esitken, A., L. Pirlak, M. Turan, and F. Sahin. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria(PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic-amsterda 110: 324-327   DOI   ScienceOn
34 Li, J. and R. J. Kremer. 2006. Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol. Control 39: 58-65   DOI   ScienceOn
35 Xu, S. Y., Y. X. Chen, W. X. Wu, K. X. Wang, Q. Lin, and X. Q. Liang. 2006. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci. Total Environ. 363: 206-215   DOI   ScienceOn
36 Schnoor, J. L. 1997. Phytoremediation. Technology evaluation report, pp.8-18. Ground-Water Remediation Technologies Analysis Center, Iowa, U.S.A
37 Mena-Violante, H. G. and V. Olalde-Portuga, 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic-amsterdam (In press)
38 Palmroth, M. R., J. Pichtel, and J. A. Puhakka. 2002. Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresoure Technol. 84: 221-228   DOI   ScienceOn
39 Schnoor, J. L., L. A. Licht, S. C. McCutcheon, N. L. Wolfe, and L. H. Carreira. 1995. Phytoremediation of organic and nutrient contaminats. Environ. Sci. Technol. 29: 318-323   DOI
40 Zaidi, S., S. Usmani, B. R. Singh, and J. Musarrat. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997   DOI   ScienceOn
41 Mackova, M., B. Vrchotova, K. Francova, M. Sylvestre, M. Tomaniova, P. Lovecka, K. Demnerova, and T. Macek. 2007. Biotransformation of PCBs by plants and bacteriaconsequences of plant-microbe interactions. Eur. J. Soil Biol. 43: 233-241   DOI   ScienceOn
42 Adam, G. and H. J. Duncan. 2002. Influence of diesel fuel on seed germination. Environ. Pollut. 120: 363-370   DOI   ScienceOn
43 Etsuko, K., M. Tsukasa, M. Shyoji, and T. Masahiko. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Enviro. Exp. Bot. 55: 110-119   DOI   ScienceOn
44 Joner, E. J., D. Hirmann, O. Szolar, H. J. Todorovic, D. C. Leyval, and A. P. Loibner. 2004. Priming effects on PAR degradation and ecotoxicity during a phytoremediation experiment. Environ. Pollut. 128: 429-435   DOI   ScienceOn
45 Pradhan, S. P., J. R. Conrad, J. R. Paterek, and V. J. Srivastava. 1998. Potential of phytoremediation for treatment of PARs in soil at MPG sites. J. Soil Contamination 7: 467-480   DOI   ScienceOn
46 Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2007. Interactions between a plant growth-promoting rhizobacterium an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35:480--487   DOI   ScienceOn
47 Ghosh, M. and S. P. Singh. 2005. A review on phytoremediation of heavy metal and utilization of its byproducts. Appl. Ecol. Eniviron. Res. 3: 1-18
48 Wu, S. C., K. C. Cheung, Y. M. Luo, and M. H. Wong. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pollut. 140: 124-35   DOI   ScienceOn
49 Aslantas, R., C. Ramazan, and F. Sabin. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Horticamsterdam 111: 371-377   DOI   ScienceOn
50 Huang, X. D., El-Alawi, Y., Penrose, D. M., Glick, B. R., and Greenberg. B. M. 2004. A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut. 130: 465-76   DOI   ScienceOn
51 Zhuang, X., J. Chen, H. Shim, and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ. Int. 33: 406-413   DOI   ScienceOn
52 Aslund, A. L. W., B. A. Zeed, A. Rutter, and K. J. Reimer. 2007. In situ phytoextraction of polychlorinated biphenyl (PCB) contaminated soil. Sci. Total Environ. 374: 1-12   DOI   ScienceOn
53 Boopathy, R. 2004. Factors limiting bioremediation technologies (review paper). Bioresource Technol. 74: 63-67   DOI   ScienceOn
54 Shaharoona, B., M. Arshad, and A. Khilid. 2007. Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. J. Microbiol. 45: 15-20   PUBMED
55 Komarek, M., P. Tluatos, J. Szakova, V. Chrastny, and V. Ettler. 2007. The use of maize and poplar in chelant-enhanced phytoextractionof lead from contaminated agricultural soil. Chemosphere 67: 640-651   DOI   ScienceOn
56 Shimp, J. F., J. C. Tracy, L. C. Davis, E. Lee, W. Huang, L. E. Erickson, and J. L. Schnoor. 1993. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic meterials. Envoron. Sci. Technol. 23: 41-77   DOI   ScienceOn
57 Orhan, E. A. E., S. Ercisli, M. Turan, and F. Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic-amsterdam 111: 38-43   DOI   ScienceOn